Fry brings outstanding experience to the role of communicating to diverse audiences, including with people not previously interested in maths. She will follow in the footsteps of giants of public engagement with mathematics, including David Spiegelhalter and the late Stephen Hawking as she joins the Department of Applied Mathematics and Theoretical Physics (DAMTP).
“I’m really looking forward to joining the Cambridge community,” said Fry, “to those chance encounters and interactions that end up
Fry brings outstanding experience to the role of communicating to diverse audiences, including with people not previously interested in maths. She will follow in the footsteps of giants of public engagement with mathematics, including David Spiegelhalter and the late Stephen Hawking as she joins the Department of Applied Mathematics and Theoretical Physics (DAMTP).
“I’m really looking forward to joining the Cambridge community,” said Fry, “to those chance encounters and interactions that end up sparking new ideas and collaborations: it’s so exciting to be in an environment where every single person you speak to is working on something absolutely fascinating.”
Fry won the Christopher Zeeman Medal for promoting mathematics in 2018 and the Royal Society David Attenborough Award in 2024, and is the current President of the Institute of Mathematics and its Applications.
She is currently Professor of the Mathematics of Cities at UCL, where she works with physicists, mathematicians, computer scientists, architects and geographers to study patterns in human behaviour – particularly in an urban setting. Her research applies to a wide range of social problems and questions, from shopping and transport to urban crime, riots and terrorism, and she has applied this research by advising and working alongside governments, police forces, supermarkets and health analysts.
“When you create a mathematical model, it doesn’t really matter how beautifully crafted your equations are, or how accurate your simulations are,” said Fry. “You have to think about how the work you’ve created is going to be seen and perceived by other people and how it’s going to be understood or misunderstood.”
The new professorship builds on Cambridge’s long track record in sharing maths. DAMTP is also the home of the largest subject-specific outreach and engagement project in the University – the Millennium Mathematics Project (MMP).
Fry says she plans for her work at Cambridge to follow on from Spiegelhalter's extensive public communication work, which she sees as a vital part of the research process.
“Communication is not an optional extra: if you are creating something that is used by, or interacts with members of the public or the world in general, then I think it’s genuinely your moral duty to engage the people affected by it,” she said. “I’d love to build and grow a community around excellence in mathematical communication at Cambridge – so that we’re really researching the best possible methods to communicate with people.”
“Hannah is an outstanding mathematician and researcher, and one of the UK’s best maths communicators,” said Professor Colm-cille Caulfield, Head of DAMTP. “Mathematics affects so many aspects of our everyday lives in interesting and exciting ways, and Hannah will strengthen the excellent work already being done at Cambridge in this area. We in DAMTP and our Faculty of Mathematics colleagues in the Department of Pure Mathematics and Mathematical Statistics are so excited to have her join us.”
Professor Fry announced her appointment at an event yesterday (21 November) organised by the MMP in collaboration with the Newton Gateway to Mathematics at the Isaac Newton Institute in Cambridge. The event – Communicating mathematical and data sciences – what does success look like? – explored evidence for effectively communicating mathematical and data science research to policymakers, mainstream media and the wider public.
“Professor Fry is one of the most exciting voices in science and mathematics today,” said Professor Nigel Peake, Head of the School of the Physical Sciences. “Her deep commitment to sharing the excitement of maths with people of all ages and backgrounds, at a time when mathematical literacy has never been so important, will be an enormous benefit to Cambridge, and the UK as a whole.”
Professor Hannah Fry, mathematician, best-selling author, award-winning science presenter and host of popular podcasts and television shows, will join the University of Cambridge as the first Professor of the Public Understanding of Mathematics on 1 January.
Nestled against the lush backdrop of Kent Ridge Forest, Ridge View Residential College (RVRC) is the University’s first and only residential college located outside NUS University Town. Founded on the integrated themes of sustainability and workplace readiness, the College started as a one-year living-learning programme in 2014, expanding into a two-year programme in 2017 and evolving further in 2021 to align with the enhanced NUS General Education Curriculum.This year, RVRC celebrates its 10th
Nestled against the lush backdrop of Kent Ridge Forest, Ridge View Residential College (RVRC) is the University’s first and only residential college located outside NUS University Town. Founded on the integrated themes of sustainability and workplace readiness, the College started as a one-year living-learning programme in 2014, expanding into a two-year programme in 2017 and evolving further in 2021 to align with the enhanced NUS General Education Curriculum.
This year, RVRC celebrates its 10th anniversary, a milestone that has seen learning at the residential college transcend the boundaries of the classroom, and its students playing an active role in contributing towards sustainability efforts in NUS and the community.
In line with its sustainability theme, many of the courses offered at RVRC incorporate the United Nations Sustainable Development Goals, allowing students to explore sustainability initiatives that help shape a future that is more sustainable and equitable for all. This is done through a multifaceted learning approach that focuses on experiential outdoor learning and collaboration with industry partners. In line with its workplace readiness theme, students are also encouraged to participate in meaningful college activities beyond coursework that diversify their interests and skillsets to help develop them into better versions of their current selves.
“Place, Programme, and People are the elements that make for memorable university experiences, and these are the elements that make for a memorable RV10,” said RVRC College Master Associate Professor Sim Tick Ngee, outlining the focus of the year-long celebration in his congratulatory message.
As part of RV10, the College’s initiative to encapsulate the anniversary celebrations, a series of commemorative events were held to strengthen the college culture and collective sense of community among its students, alumni, and staff. Here are three of the events that showcased the different but integrated aspects of life at RVRC – namely academic, student and residential life.
RVRC Symposium: Living and learning for a shared future – the RVRC way
For the first time this year, students led the planning and organising of the annual RVRC Symposium held on 24 February 2024. Some 145 participants comprising students, educators and community partners attended the Symposium which showcased the best of student and alumni achievements through panel discussions, oral presentations, and poster sessions.
Guest-of-Honour Associate Professor Adrian Loo from the NUS Department of Biological Sciences shared about the importance of education and community stewardship for youth, drawing on his extensive experience in his previous role as National Parks Board’s Group Director for Wildlife Management and Senior Director for Community Projects. Participants also gleaned insights from RVRC alumnus, Founder and CEO of Hatch Mr Victor Zhu (Science '20), who shared about his journey in building his start-up with a social mission of providing digital skills and employability programmes whilst still a student at RVRC.
The day’s programme was segmented into three key themes, namely Edu-venture, Adventure, and Venturing Beyond. Edu-venture showcased RVRC’s approach towards fostering a learning ecosystem that has addressed societal and environmental challenges, as well as student projects on real-world issues. Adventure highlighted the importance of various co-curricular and student life activities, which has helped hone students’ soft skills and provided them an avenue to give back to society. Lastly, Venturing Beyond challenged students to build meaningful initiatives that go beyond the walls of the College and beyond their time at NUS, encouraging them to champion lasting environmental and societal changes through innovative means.
Co-Chair of the Symposium’s organising committee and RVRC Senior Jason Qiu, a Year 4 undergraduate from the School of Computing, said, “It was the insightful questions posed during the presentations along with the meaningful tea break discussions that brought home the value of the engagement for the RVRC community which truly represented the vibrant learning spirit that the College embodies.”
Gala Dinner: Celebrating a decade of shared memories, experiences and achievements
The RVRC 10th Anniversary Gala Dinner on 30 August 2024 saw past and present members of the College celebrate the journey that has shaped RVRC into the unique, dynamic community it is today.
The evening began with a commemorative speech by College Master Assoc Prof Sim, who reflected on the College's decade of achievements. RVRC Rector Dr Noeleen Heyzer and RVRC’s first Director of Studies Associate Professor Lee Kooi Cheng shared about the College's indelible impact over the years while founding RVRC College Master Professor Adekunle Adeyeye recounted the strong foundation upon which the college was built, in a special video message.
Guests were also treated to a night of engaging performances, including song items by RVRC’s Jukebox and the winners of the RV10 songwriting competition, as well as an electrifying dance performance by the NUS Dance Ensemble.
A highlight at the gala dinner was the commemorative video created by RVRC students which showcased RVRC’s key milestones since its inception, evoking a deep sense of nostalgia amongst alumni, faculty and staff, both past and present, who had an enjoyable time reconnecting and reminiscing about the pivotal moments that defined their time at the College.
RVRC alumnus Zhang Xiangyu Oliver (Business ‘24), said, “It was great to reconnect with the people who made my four-year journey in RVRC memorable, and celebrate together the countless milestones of the college since inception. I’m confident that RVRC will continue to inspire the next generation in the upcoming decade and beyond!”
RVRC Day: Building bridges, strengthening bonds
Apart from sustainability, the RVRC community is also passionate about giving back to society, a cornerstone of NUS' ethos. The theme of RVRC Day – Building Bridges, Strengthening Bonds – underscored the importance of community building, not just amongst the RVRC community of students and staff, but just as importantly, with the wider community and the less privileged.
In the early morning hours of 26 October 2024, the RVRC community gathered at the Harbourfront area for Walk for Rice, a long-running signature event at RVRC to support vulnerable families. In partnership with a charity organisation, for every 300 meters walked, food donations were made to support vulnerable families, turning each step into a meaningful act of kindness. With the support of 52 RVRC students and staff, a total of 520 kilometres were clocked, making possible a donation of 1,733 packets of rice and oatmeal.
Following the charity walk, the event continued with a second segment focused on community engagement. Titled OutRidge, this initiative aimed to raise awareness for persons with disabilities (PWDs), foster inclusivity and inspire participants to take active steps toward building a more inclusive society. In addition to having the opportunity to interact with PWDs on their lived experiences and challenges, the event held at the College also featured a fireside chat with two invited speakers – Year 4 NUS student Kimberly Quek, a Deaflympic athlete who won numerous medals at international bowling competitions, and Joan Hung, a visually impaired para athlete with Team Singapore.
Additionally, participants had the opportunity to engage in interactive games at several informative booths designed by RVRC students to raise awareness about the daily challenges faced by PWDs. They also lent their support through their patronage of the food stalls set up by social enterprises that advocate for the PWD community.
RVRC Senior and Year 3 Computing undergraduate Soh Zheng Yang, Marcus, reflected, “I found the fireside chat to be eye-opening, especially when the two speakers shared about how they strive to overcome the challenges they face in pursuing their dreams. The interactive booths made me realise how adaptable PWDs have to be, to overcome the limitations of living in a society that does not primarily cater to their special needs or circumstances. I was happy to see the RVRC community come together to empower PWDs through active participation and enhanced awareness.”
As the celebrations come to a close, College Master Assoc Prof Sim, said, “The conclusion of the year-long activities held in conjunction with RV10 has brought a renewed understanding of what has shaped the College into what it is today. With this reflection comes a strong sense of optimism for the future—one where the College continues to evolve, striving towards becoming a better place that offers a more robust RVRC programme with a more united and inclusive RVRC community.”
Eclectic Convergence, a yearly event hosted by Entrepreneurship at Cornell, included featured speakers, networking, a pitch contest and tabling by student businesses.
Eclectic Convergence, a yearly event hosted by Entrepreneurship at Cornell, included featured speakers, networking, a pitch contest and tabling by student businesses.
University of Melbourne Vice-Chancellor Professor Duncan Maskell has announced the appointment of Professor Muthupandian Ashokkumar as Director of the Melbourne Global Centre in Delhi.
University of Melbourne Vice-Chancellor Professor Duncan Maskell has announced the appointment of Professor Muthupandian Ashokkumar as Director of the Melbourne Global Centre in Delhi.
Nation & World
What Trump got right
Setti Warren and Kellyanne Conway.Photos by Niles Singer/Harvard Staff Photographer
Christina Pazzanese
Harvard Staff Writer
November 21, 2024
3 min read
Kellyanne Conway, president-elect’s 2016 campaign manager and former senior adviser, discusses recent election, what comes next
The Democrats got it wrong.
It wasn’t threats to national securit
Kellyanne Conway, president-elect’s 2016 campaign manager and former senior adviser, discusses recent election, what comes next
The Democrats got it wrong.
It wasn’t threats to national security or democracy, and it wasn’t the U.S. Supreme Court’s undoing of Roe v. Wade. What voters cared most about this election was “safety, affordability, fairness, and education,” said Republican operative Kellyanne Conway during a sometimes testy 90-minute talk at the JFK Jr. Forum about the 2024 election and what to expect from the incoming Trump administration.
That’s why ads and other messaging about crime, inflation, immigration, student loan forgiveness, and school choice proved so effective in the campaigns of President-elect Donald Trump and several other Republican candidates, she told Setti Warren, director of the Institute of Politics at Harvard Kennedy School.
Trump won by running up the numbers of voters already predisposed to vote for him and “peeling off” some support among “core Democratic” Party constituencies, including African Americans, Hispanic Americans, union households, Jewish, and younger voters, improving on his own 2016 and 2020 numbers, said Conway, who managed the final months of Trump’s 2016 campaign and served as an adviser during his first term.
Conway said she thinks Democrats underestimated how motivating the issue of K-12 education was to many across the political spectrum, particularly women, who did not support Harris as robustly as they had Presidents Joe Biden and Barack Obama.
Trump was seen as “authentic” and a proven commodity who had already done the job and ran a “joyful” and “forward-looking” campaign, she said, pointing to Trump’s visit to a McDonald’s franchise, rallies at concert venues, and his garbage truck ride.
Conway credited the campaign’s embrace of “new, new media” like TikTok, podcasts, and social media influencers, as a strategic move that paid real dividends in the final weeks reaching young men and low propensity voters. Also important was the campaign’s under-reported effort to educate disengaged voters about the many ways they could cast a ballot before Election Day, which also helped the former president prevail.
Over the past two weeks, Trump has announced more than two dozen nominees for White House and Cabinet positions, primarily top campaign staffers and high-profile business executives.
“What they all have in common is they know him; he knows them; and they are fluent in the America First agenda, meaning: This is what we’ve been elected to do,” Conway said. “So he’s got people who are willing to work with alacrity and energy to get that agenda through.”
At times, Conway flashed the quick and cutting fast-talk that has made her a polarizing figure on the left, sparring with student questioners.
She called for students to try to bring their friends who suffer from “Trump derangement syndrome” back to their senses.
“You all know someone afflicted by it. … It wrecks the nervous system. It addles the brain. There is no vaccine, cure, or therapeutic, but you all have a role to play in helping people at least unwind a little bit from it” by not canceling those who have a different point of view.
“I certainly hope that the new government that’s forming can rely upon, if not all of you right away, most of you along the way, to help in any way, shape, or form that you possibly can,” she said.
The Irish philosopher George Berkely, best known for his theory of immaterialism, once famously mused, “If a tree falls in a forest and no one is around to hear it, does it make a sound?”What about AI-generated trees? They probably wouldn’t make a sound, but they will be critical nonetheless for applications such as adaptation of urban flora to climate change. To that end, the novel “Tree-D Fusion” system developed by researchers at the MIT Computer Science and Artificial Intelligence Laboratory
The Irish philosopher George Berkely, best known for his theory of immaterialism, once famously mused, “If a tree falls in a forest and no one is around to hear it, does it make a sound?”
What about AI-generated trees? They probably wouldn’t make a sound, but they will be critical nonetheless for applications such as adaptation of urban flora to climate change. To that end, the novel “Tree-D Fusion” system developed by researchers at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Google, and Purdue University merges AI and tree-growth models with Google's Auto Arborist data to create accurate 3D models of existing urban trees. The project has produced the first-ever large-scale database of 600,000 environmentally aware, simulation-ready tree models across North America.
“We’re bridging decades of forestry science with modern AI capabilities,” says Sara Beery, MIT electrical engineering and computer science (EECS) assistant professor, MIT CSAIL principal investigator, and a co-author on a new paper about Tree-D Fusion. “This allows us to not just identify trees in cities, but to predict how they’ll grow and impact their surroundings over time. We’re not ignoring the past 30 years of work in understanding how to build these 3D synthetic models; instead, we’re using AI to make this existing knowledge more useful across a broader set of individual trees in cities around North America, and eventually the globe.”
Tree-D Fusion builds on previous urban forest monitoring efforts that used Google Street View data, but branches it forward by generating complete 3D models from single images. While earlier attempts at tree modeling were limited to specific neighborhoods, or struggled with accuracy at scale, Tree-D Fusion can create detailed models that include typically hidden features, such as the back side of trees that aren’t visible in street-view photos.
The technology’s practical applications extend far beyond mere observation. City planners could use Tree-D Fusion to one day peer into the future, anticipating where growing branches might tangle with power lines, or identifying neighborhoods where strategic tree placement could maximize cooling effects and air quality improvements. These predictive capabilities, the team says, could change urban forest management from reactive maintenance to proactive planning.
A tree grows in Brooklyn (and many other places)
The researchers took a hybrid approach to their method, using deep learning to create a 3D envelope of each tree’s shape, then using traditional procedural models to simulate realistic branch and leaf patterns based on the tree’s genus. This combo helped the model predict how trees would grow under different environmental conditions and climate scenarios, such as different possible local temperatures and varying access to groundwater.
Now, as cities worldwide grapple with rising temperatures, this research offers a new window into the future of urban forests. In a collaboration with MIT’s Senseable City Lab, the Purdue University and Google team is embarking on a global study that re-imagines trees as living climate shields. Their digital modeling system captures the intricate dance of shade patterns throughout the seasons, revealing how strategic urban forestry could hopefully change sweltering city blocks into more naturally cooled neighborhoods.
“Every time a street mapping vehicle passes through a city now, we’re not just taking snapshots — we’re watching these urban forests evolve in real-time,” says Beery. “This continuous monitoring creates a living digital forest that mirrors its physical counterpart, offering cities a powerful lens to observe how environmental stresses shape tree health and growth patterns across their urban landscape.”
AI-based tree modeling has emerged as an ally in the quest for environmental justice: By mapping urban tree canopy in unprecedented detail, a sister project from the Google AI for Nature team has helped uncover disparities in green space access across different socioeconomic areas. “We’re not just studying urban forests — we’re trying to cultivate more equity,” says Beery. The team is now working closely with ecologists and tree health experts to refine these models, ensuring that as cities expand their green canopies, the benefits branch out to all residents equally.
It’s a breeze
While Tree-D fusion marks some major “growth” in the field, trees can be uniquely challenging for computer vision systems. Unlike the rigid structures of buildings or vehicles that current 3D modeling techniques handle well, trees are nature’s shape-shifters — swaying in the wind, interweaving branches with neighbors, and constantly changing their form as they grow. The Tree-D fusion models are “simulation-ready” in that they can estimate the shape of the trees in the future, depending on the environmental conditions.
“What makes this work exciting is how it pushes us to rethink fundamental assumptions in computer vision,” says Beery. “While 3D scene understanding techniques like photogrammetry or NeRF [neural radiance fields] excel at capturing static objects, trees demand new approaches that can account for their dynamic nature, where even a gentle breeze can dramatically alter their structure from moment to moment.”
The team’s approach of creating rough structural envelopes that approximate each tree’s form has proven remarkably effective, but certain issues remain unsolved. Perhaps the most vexing is the “entangled tree problem;” when neighboring trees grow into each other, their intertwined branches create a puzzle that no current AI system can fully unravel.
The scientists see their dataset as a springboard for future innovations in computer vision, and they’re already exploring applications beyond street view imagery, looking to extend their approach to platforms like iNaturalist and wildlife camera traps.
“This marks just the beginning for Tree-D Fusion,” says Jae Joong Lee, a Purdue University PhD student who developed, implemented and deployed the Tree-D-Fusion algorithm. “Together with my collaborators, I envision expanding the platform’s capabilities to a planetary scale. Our goal is to use AI-driven insights in service of natural ecosystems — supporting biodiversity, promoting global sustainability, and ultimately, benefiting the health of our entire planet.”
Beery and Lee’s co-authors are Jonathan Huang, Scaled Foundations head of AI (formerly of Google); and four others from Purdue University: PhD students Jae Joong Lee and Bosheng Li, Professor and Dean's Chair of Remote Sensing Songlin Fei, Assistant Professor Raymond Yeh, and Professor and Associate Head of Computer Science Bedrich Benes. Their work is based on efforts supported by the United States Department of Agriculture’s (USDA) Natural Resources Conservation Service and is directly supported by the USDA’s National Institute of Food and Agriculture. The researchers presented their findings at the European Conference on Computer Vision this month.
The Irish philosopher George Berkely, best known for his theory of immaterialism, once famously mused, “If a tree falls in a forest and no one is around to hear it, does it make a sound?”What about AI-generated trees? They probably wouldn’t make a sound, but they will be critical nonetheless for applications such as adaptation of urban flora to climate change. To that end, the novel “Tree-D Fusion” system developed by researchers at the MIT Computer Science and Artificial Intelligence Laboratory
The Irish philosopher George Berkely, best known for his theory of immaterialism, once famously mused, “If a tree falls in a forest and no one is around to hear it, does it make a sound?”
What about AI-generated trees? They probably wouldn’t make a sound, but they will be critical nonetheless for applications such as adaptation of urban flora to climate change. To that end, the novel “Tree-D Fusion” system developed by researchers at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Google, and Purdue University merges AI and tree-growth models with Google's Auto Arborist data to create accurate 3D models of existing urban trees. The project has produced the first-ever large-scale database of 600,000 environmentally aware, simulation-ready tree models across North America.
“We’re bridging decades of forestry science with modern AI capabilities,” says Sara Beery, MIT electrical engineering and computer science (EECS) assistant professor, MIT CSAIL principal investigator, and a co-author on a new paper about Tree-D Fusion. “This allows us to not just identify trees in cities, but to predict how they’ll grow and impact their surroundings over time. We’re not ignoring the past 30 years of work in understanding how to build these 3D synthetic models; instead, we’re using AI to make this existing knowledge more useful across a broader set of individual trees in cities around North America, and eventually the globe.”
Tree-D Fusion builds on previous urban forest monitoring efforts that used Google Street View data, but branches it forward by generating complete 3D models from single images. While earlier attempts at tree modeling were limited to specific neighborhoods, or struggled with accuracy at scale, Tree-D Fusion can create detailed models that include typically hidden features, such as the back side of trees that aren’t visible in street-view photos.
The technology’s practical applications extend far beyond mere observation. City planners could use Tree-D Fusion to one day peer into the future, anticipating where growing branches might tangle with power lines, or identifying neighborhoods where strategic tree placement could maximize cooling effects and air quality improvements. These predictive capabilities, the team says, could change urban forest management from reactive maintenance to proactive planning.
A tree grows in Brooklyn (and many other places)
The researchers took a hybrid approach to their method, using deep learning to create a 3D envelope of each tree’s shape, then using traditional procedural models to simulate realistic branch and leaf patterns based on the tree’s genus. This combo helped the model predict how trees would grow under different environmental conditions and climate scenarios, such as different possible local temperatures and varying access to groundwater.
Now, as cities worldwide grapple with rising temperatures, this research offers a new window into the future of urban forests. In a collaboration with MIT’s Senseable City Lab, the Purdue University and Google team is embarking on a global study that re-imagines trees as living climate shields. Their digital modeling system captures the intricate dance of shade patterns throughout the seasons, revealing how strategic urban forestry could hopefully change sweltering city blocks into more naturally cooled neighborhoods.
“Every time a street mapping vehicle passes through a city now, we’re not just taking snapshots — we’re watching these urban forests evolve in real-time,” says Beery. “This continuous monitoring creates a living digital forest that mirrors its physical counterpart, offering cities a powerful lens to observe how environmental stresses shape tree health and growth patterns across their urban landscape.”
AI-based tree modeling has emerged as an ally in the quest for environmental justice: By mapping urban tree canopy in unprecedented detail, a sister project from the Google AI for Nature team has helped uncover disparities in green space access across different socioeconomic areas. “We’re not just studying urban forests — we’re trying to cultivate more equity,” says Beery. The team is now working closely with ecologists and tree health experts to refine these models, ensuring that as cities expand their green canopies, the benefits branch out to all residents equally.
It’s a breeze
While Tree-D fusion marks some major “growth” in the field, trees can be uniquely challenging for computer vision systems. Unlike the rigid structures of buildings or vehicles that current 3D modeling techniques handle well, trees are nature’s shape-shifters — swaying in the wind, interweaving branches with neighbors, and constantly changing their form as they grow. The Tree-D fusion models are “simulation-ready” in that they can estimate the shape of the trees in the future, depending on the environmental conditions.
“What makes this work exciting is how it pushes us to rethink fundamental assumptions in computer vision,” says Beery. “While 3D scene understanding techniques like photogrammetry or NeRF [neural radiance fields] excel at capturing static objects, trees demand new approaches that can account for their dynamic nature, where even a gentle breeze can dramatically alter their structure from moment to moment.”
The team’s approach of creating rough structural envelopes that approximate each tree’s form has proven remarkably effective, but certain issues remain unsolved. Perhaps the most vexing is the “entangled tree problem;” when neighboring trees grow into each other, their intertwined branches create a puzzle that no current AI system can fully unravel.
The scientists see their dataset as a springboard for future innovations in computer vision, and they’re already exploring applications beyond street view imagery, looking to extend their approach to platforms like iNaturalist and wildlife camera traps.
“This marks just the beginning for Tree-D Fusion,” says Jae Joong Lee, a Purdue University PhD student who developed, implemented and deployed the Tree-D-Fusion algorithm. “Together with my collaborators, I envision expanding the platform’s capabilities to a planetary scale. Our goal is to use AI-driven insights in service of natural ecosystems — supporting biodiversity, promoting global sustainability, and ultimately, benefiting the health of our entire planet.”
Beery and Lee’s co-authors are Jonathan Huang, Scaled Foundations head of AI (formerly of Google); and four others from Purdue University: PhD students Jae Joong Lee and Bosheng Li, Professor and Dean's Chair of Remote Sensing Songlin Fei, Assistant Professor Raymond Yeh, and Professor and Associate Head of Computer Science Bedrich Benes. Their work is based on efforts supported by the United States Department of Agriculture’s (USDA) Natural Resources Conservation Service and is directly supported by the USDA’s National Institute of Food and Agriculture. The researchers presented their findings at the European Conference on Computer Vision this month.
Penn’s Climate and Sustainability Action Plan 4.0 outlines sustainability goals for fiscal year 2025-29 and lays out Penn’s path toward carbon neutrality by 2042.
Penn’s Climate and Sustainability Action Plan 4.0 outlines sustainability goals for fiscal year 2025-29 and lays out Penn’s path toward carbon neutrality by 2042.
Health
Use of new diet drugs likely to mushroom
Study estimates over half of Americans eligible to take them based on diagoses, underscoring need to ensure equity of access.
BIDMC Communications
November 21, 2024
4 min read
In a new analysis of national data, an estimated 137 million U.S. adults, more than half of the adult population, would qualify for the anti-obesity drug semagludtide.
“Thes
Study estimates over half of Americans eligible to take them based on diagoses, underscoring need to ensure equity of access.
BIDMC Communications
4 min read
In a new analysis of national data, an estimated 137 million U.S. adults, more than half of the adult population, would qualify for the anti-obesity drug semagludtide.
“These staggering numbers mean that we are likely to see large increases in spending on semaglutide and related medications in years to come,” said corresponding author Dhruv S. Kazi, associate director of the Richard A. and Susan F. Smith Center for Outcomes Research at Beth Israel Deaconess Medical Center. “Ensuring equitable access to these effective but high-cost medications, as well as supporting individuals so that they can stay on the therapy long-term, should be a priority for our clinicians and policymakers.”
The findings, which were presented at the American Heart Association Scientific Sessions and simultaneously published in JAMA Cardiology, underscore the need to increase equitable access to this new class of pharmaceuticals.
Semaglutide belongs to a class of drugs known as GLP-1 receptor agonists. It is currently approved to manage diabetes, treat overweight or obesity, and of recurrent cardiovascular disease. About 15 million adults take semaglutide, which stimulates the pancreas to produce insulin and reduces the hunger hormone ghrelin, decreasing the appetite and slowing down the rate of stomach emptying. As a result, semaglutide helps lower blood sugar levels and promotes weight loss.
Semaglutide is found to improve symptoms in sleep apnea and in some types of heart failure, and slows the progression of chronic kidney disease.
In 2023, it was the top-selling drug in the U.S. in terms of total pharmaceutical spending. But rapidly emerging data about its effectiveness for other health conditions is likely to further expand its use in future years. For instance, semaglutide is found to improve symptoms in sleep apnea and in some types of heart failure, and slows the progression of chronic kidney disease. Semaglutide and others in its class are currently being evaluated for treatment of liver and kidney diseases, substance use disorders, and dementia.
Ivy Shi, who is a resident in internal medicine at BIDMC, worked with Kazi to produce the analysis. They used five years’ worth of recent data from the National Health and Nutrition Examination Survey, a long-running survey of the U.S. population run by the U.S. Department of Health and Human Services, to identify U.S. adults aged 18 years or older who would be eligible for semaglutide treatment based on currently approved indications. They analyzed information about 25,531 survey participants gathered through in-person interviews, physical examinations, and laboratory testing.
They found that of the 136.8 million U.S. adults who qualified for semaglutide, 35 million would administer it for diabetes management, 129.2 million for weight loss, and 8.9 million for secondary prevention of cardiovascular disease. The semaglutide-eligible population includes 26.8 million adults covered by Medicare, 13.8 million covered by Medicaid, and 61.1 million covered by commercial insurance.
“The large number of U.S. adults eligible for semaglutide highlights its potential transformative impact on population health,” said Shi. “Prior studies have shown that more than half of the individuals who have taken these medications state the therapy was difficult to afford. Interventions to reduce economic barriers to access are urgently needed.”
Co-authors: Ivy Shi, Robert W. Yeh, Jennifer E. Ho, and Issa Dahabreh of BIDMC; and Sadiya S. Khan of Feinberg School of Medicine, Northwestern University.
Disclosures: Sadiya S. Khan reported grants from the National Heart, Lung, and Blood Institute outside the submitted work. Jennifer E. Ho reported grants from the National Institutes of Health during the conduct of the study. Issa Dahabreh reported a contract with the Patient-Centered Outcomes Research Institute and grants from the National Institutes of Health during the conduct of the study. Kazi reported grants from the National Heart, Lung, and Blood Institute, American Heart Institute, Agency for Healthcare Research and Quality, Patient-Centered Outcomes Research Institute, and Institute for Clinical and Economic Research outside the submitted work. No other disclosures were reported.
Funding/support: Dahabreh is supported by grants from the National Library of Medicine (R01 LM013616), the National Heart, Lung, and Blood Institute (R01 HL136708), and the Patient-Centered Outcomes Research Institute (ME-2021C2-22365).
Campus & Community
He didn’t come all this way to lose to Yale
Harvard coach Andrew Aurich answers questions from the media. Niles Singer/Harvard Staff Photographer
Christy DeSmith
Harvard Staff Writer
November 21, 2024
5 min read
Dream job and a winning season for Aurich, but one big test remains: The Game.
For many Crimson football fans, devotion can be measured by consecutive year
Dream job and a winning season for Aurich, but one big test remains: The Game.
For many Crimson football fans, devotion can be measured by consecutive years of attendance at the Harvard-Yale game. But Saturday’s showdown will be a first for the man who now leads their beloved program.
“All the time I was playing at Princeton, and coaching at Princeton, I was kind of jealous of Harvard-Yale,” said Andrew Aurich, Thomas Stephenson Family Head Coach for Harvard Football. “I’m really excited to experience it.”
The first-time head coach, who came to Harvard from Rutgers University, has led the Crimson to an impressive 8-1 record. The team clinched at least a share of the Ivy League title with a dramatic win over the University of Pennsylvania last weekend, making Aurich the first head football coach in Harvard history to win a league title in his first season.
We caught up with Aurich to learn more about preparations for one of the biggest dates on the Crimson calendar. The interview has been edited for length and clarity.
The Crimson are having a great season under your leadership. To what do you attribute your early success?
Former head coach Tim Murphy played a big part in what’s happening this year. When I got here, it was very clear these players were already training to win a championship. They are very tough mentally. We’ve had some close games where our ability to focus at the end, and really execute, has allowed us to win.
Tell me about your leadership style.
One of the core parts of our culture is 100 percent honesty; the players are always going to get 100 percent honesty from me. Whether or not they like what they hear, they should know it’s coming from a good place. I expect the same from them. If there’s a better way to do something, I want to find a way to do that.
What changes have you brought to the program?
My plan all along was to get an Ivy League head coaching job. But my experiences outside the league helped me see there were opportunities to help these young men become better players and a better team overall. If you ask them, they’ll say there’s a little more emphasis on sports science, whether it’s in the weight room or the emphasis we’re putting on nutrition, hydration, and sleep.
You said something interesting just now — that you always wanted to be a head coach in the Ivy League. Say more about that.
I knew I wanted to get into coaching when I was playing at Princeton. My dad had been my high school football coach, so I went back to St. Paul, Minnesota, and coached with him for a year and confirmed that I loved it. I ended up at a small Division 3 school in Pennsylvania for two years, and then I got the opportunity to go to Rutgers for my first stint as a defensive assistant.
From there I got the running backs coaching job at Princeton. My experience with the student-athletes there was so enjoyable. They’re just so driven and fun to be around. The next year I went to the Tampa Bay Buccaneers with my former boss at Rutgers, coach Greg Schiano. But as soon I got to the NFL, I immediately thought: “The Ivy League is where it’s at, I’ve got to do everything I can to become an Ivy League head football coach.”
What happened next?
I ended up back at Princeton. I was there for a long time, but saw that I needed something more than just Ivy League experience. When coach Schiano got the head coaching job at Rutgers again, I knew that working for him would help prepare me for success.
Landing the top job at Harvard must have felt like a dream fulfilled.
I was on the road recruiting with coach Schiano as the whole hiring process was underway. He doesn’t know the Ivy League all that well, so he was trying to get some perspective. “What is it like?” he wanted to know. I told him: “Coach, this is like being at Ohio State or [University of] Michigan in the Big Ten.” The entire time I was at Princeton — whether I was a player or a coach — I saw Harvard as top dog in the Ivy League.
How are you preparing for Yale?
Well, there’s definitely a different kind of energy right now. My job is to make sure our players are going about their business the same way they have been for the last nine weeks. This game means a lot to a lot of people. Even the level of the interest from the outside, including the number of media requests, is completely different from previous weeks. But ultimately, I can’t get caught up in it. Because if I am, I know the players are.
The Crimson fell to the Bulldogs in 2022 and ’23, but you’re the favorite this year. What do you hope to see on the field Saturday?
I want to see a team that is protecting the football on offense, that is taking the ball away in defense. I want to see a team that is executing 11 guys every play. I want to see a team that’s on the attack every single play. That’s how we define ourselves as a football program.
Will you get to participate in any of the fun stuff this weekend?
Hopefully the fun stuff I’ll be doing is celebrating a win.
Since the 1980s, its been known that a mysterious contaminant forms in chloraminated drinking water, but only now has a Swiss-American research team been able to identify the unknown product in US drinking water systems.
Since the 1980s, its been known that a mysterious contaminant forms in chloraminated drinking water, but only now has a Swiss-American research team been able to identify the unknown product in US drinking water systems.
As young children, how do we build our vocabulary? Even by age 1, many infants seem to think that if they hear a new word, it means something different from the words they already know. But why they think so has remained subject to inquiry among scholars for the last 40 years.A new study carried out at the MIT Language Acquisition Lab offers a novel insight into the matter: Sentences contain subtle hints in their grammar that tell young children about the meaning of new words. The finding, based
As young children, how do we build our vocabulary? Even by age 1, many infants seem to think that if they hear a new word, it means something different from the words they already know. But why they think so has remained subject to inquiry among scholars for the last 40 years.
A new study carried out at the MIT Language Acquisition Lab offers a novel insight into the matter: Sentences contain subtle hints in their grammar that tell young children about the meaning of new words. The finding, based on experiments with 2-year-olds, suggests that even very young kids are capable of absorbing grammatical cues from language and leveraging that information to acquire new words.
“Even at a surprisingly young age, kids have sophisticated knowledge of the grammar of sentences and can use that to learn the meanings of new words,” says Athulya Aravind, an associate professor of linguistics at MIT.
The new insight stands in contrast to a prior explanation for how children build vocabulary: that they rely on the concept of “mutual exclusivity,” meaning they treat each new word as corresponding to a new object or category. Instead, the new research shows how extensively children respond directly to grammatical information when interpreting words.
“For us it’s very exciting because it’s a very simple idea that explains so much about how children understand language,” says Gabor Brody, a postdoc at Brown University, who is the first author of the paper.
The paper is titled, “Why Do Children Think Words Are Mutually Exclusive?” It is published in advance online form in Psychological Science. The authors are Brody; Roman Feiman, the Thomas J. and Alice M. Tisch Assistant Professor of Cognitive and Psychological Sciences and Linguistics at Brown; and Aravind, the Alfred Henry and Jean Morrison Hayes Career Development Associate Professor in MIT’s Department of Linguistics and Philosophy.
Focusing on focus
Many scholars have thought that young children, when learning new words, have an innate bias toward mutual exclusivity, which could explain how children learn some of their new words. However, the concept of mutual exclusivity has never been airtight: Words like “bat” refer to multiple kinds of objects, while any object can be described using countlessly many words. For instance a rabbit can be called not only a “rabbit” or a “bunny,” but also an “animal,” or a “beauty,” and in some contexts even a “delicacy.” Despite this lack of perfect one-to-one mapping between words and objects, mutual exclusivity has still been posited as a strong tendency in children’s word learning.
What Aravind, Brody, and Fieman propose is that children have no such tendency, and instead rely on so-called “focus” signals to decide what a new word means. Linguists use the term “focus” to refer to the way we emphasize or stress certain words to signal some kind of contrast. Depending on what is focused, the same sentence can have different implications. “Carlos gave Lewis a Ferrari” implies contrast with other possible cars — he could have given Lewis a Mercedes. But “Carlos gave Lewis a Ferrari” implies contrast with other people — he could have given Alexandra a Ferrari.
The researchers’ experiments manipulated focus in three experiments with a total of 106 children. The participants watched videos of a cartoon fox who asked them to point to different objects.
The first experiment established how focus influences kids’ choice between two objects when they hear a label, like “toy,” that could, in principle, correspond to either of the two. After giving a name to one of the two objects (“Look, I am pointing to the blicket”), the fox told the child, “Now you point to the toy!” Children were divided into two groups. One group heard “toy” without emphasis, while the other heard it with emphasis.
In the first version, “blicket” and “toy” plausibly refer to the same object. But in the second version, the added focus, through intonation, implies that “toy” contrasts with the previously discussed “blicket.” Without focus, only 24 percent of the respondents thought the words were mutually exclusive, whereas with the focus created by emphasizing “toy,” 89 percent of participants thought “blicket” and “toy” referred to different objects.
The second and third experiments showed that focus is not just key when it comes to words like “toy,” but it also affects the interpretation of new words children have never encountered before, like “wug” or “dax.” If a new word was said without focus, children thought the word meant the previously named object 71 percent of the time. But when hearing the new word spoken with focus, they thought it must refer to a new object 87 percent of the time.
“Even though they know nothing about this new word, when it was focused, that still told them something: Focus communicated to children the presence of a contrasting alternative, and they correspondingly understood the noun to refer to an object that had not previously been labeled,” Aravind explains.
She adds: “The particular claim we’re making is that there is no inherent bias in children toward mutual exclusivity. The only reason we make the corresponding inference is because focus tells you that the word means something different from another word. When focus goes away, children don’t draw those exclusivity inferences any more.”
The researchers believe the full set of experiments sheds new light on the issue.
“Earlier explanations of mutual exclusivity introduced a whole new problem,” Feiman says. “If kids assume words are mutually exclusive, how do they learn words that are not? After all, you can call the same animal either a rabbit or a bunny, and kids have to learn both of those at some point. Our finding explains why this isn't actually a problem. Kids won’t think the new word is mutually exclusive with the old word by default, unless adults tell them that it is — all adults have to do if the new word is not mutually exclusive is just say it without focusing it, and they’ll naturally do that if they're thinking about it as compatible.”
Learning language from language
The experiment, the researchers note, is the result of interdisciplinary research bridging psychology and linguistics — in this case, mobilizing the linguistics concept of focus to address an issue of interest in both fields.
“We are hopeful this will be a paper that shows that small, simple theories have a place in psychology,” Brody says. “It is a very small theory, not a huge model of the mind, but it completely flips the switch on some phenomena we thought we understood.”
If the new hypothesis is correct, the researchers may have developed a more robust explanation about how children correctly apply new words.
“An influential idea in language development is that children can use their existing knowledge of language to learn more language,” Aravind says. “We’re in a sense building on that idea, and saying that even in the simplest cases, aspects of language that children already know, in this case an understanding of focus, help them grasp the meanings of unknown words.”
The scholars acknowledge that more studies could further advance our knowledge about the issue. Future research, they note in the paper, could reexamine prior studies about mutual exclusivity, record and study naturalistic interactions between parents and children to see how focus is used, and examine the issue in other languages, especially those marking focus in alternate ways, such as word order.
The research was supported, in part, by a Jacobs Foundation Fellowship awarded to Feiman.
A new study by Cornell information science researchers finds that ignoring race in college admissions leads to an admitted class that is much less diverse, but with similar academic credentials to those where affirmative action is factored in.
A new study by Cornell information science researchers finds that ignoring race in college admissions leads to an admitted class that is much less diverse, but with similar academic credentials to those where affirmative action is factored in.
DPhil student Julian Wyatt has won a challenge at MICCAI 2024, the International Conference on Medical Image Computing and Computer Assisted Intervention.
DPhil student Julian Wyatt has won a challenge at MICCAI 2024, the International Conference on Medical Image Computing and Computer Assisted Intervention.
By Liu Jingting, Ulrike Sengstschmid, Bowen Yan, and Thi Hang Banh, researchers from the Asia Competitiveness Institute at Lee Kuan Yew School of Public Policy at NUSThe Business Times, 19 November 2024, Opinion, p22
By Liu Jingting, Ulrike Sengstschmid, Bowen Yan, and Thi Hang Banh, researchers from the Asia Competitiveness Institute at Lee Kuan Yew School of Public Policy at NUS
CNA Online, 18 November 20248world Online, 18 November 2024Suria News Online, 18 November 2024Warna 94.2FM, 18 November 2024Lianhe Zaobao, 19 November 2024, Singapore, p5
By Assoc Prof Brian D. Earp, Dir of the Oxford-NUS Centre for Neuroethics and Society (OCNS) and the EARP Lab; Prof Julian Savulescu, Chen Su Lan Centennial Professor, both from the Dept of Biomedical Ethics (CBmE) at NUS Yong Loo Lin School of Medicine; and Dr Sebastian Porsdam Mann, Visiting Research FellowThe Straits Times, 15 November 2024, Opinion, pB3
By Assoc Prof Brian D. Earp, Dir of the Oxford-NUS Centre for Neuroethics and Society (OCNS) and the EARP Lab; Prof Julian Savulescu, Chen Su Lan Centennial Professor, both from the Dept of Biomedical Ethics (CBmE) at NUS Yong Loo Lin School of Medicine; and Dr Sebastian Porsdam Mann, Visiting Research Fellow
University of Melbourne and La Trobe University have begun a project to compile a four-volume collection of key documents that tell the story of Australian history from an Aboriginal perspective, which will be sent to remote community schools across Australia and will eventually be in every school and public library.
University of Melbourne and La Trobe University have begun a project to compile a four-volume collection of key documents that tell the story of Australian history from an Aboriginal perspective, which will be sent to remote community schools across Australia and will eventually be in every school and public library.
Campus & Community
Ketanji Brown Jackson? Present!
Supreme Court Justice Ketanji Brown Jackson (left) with Michael Sandel and Margaret Marshall, former chief justice of the Supreme Judicial Court of Massachusetts.Photo by Grace DuVal
Christy DeSmith
Harvard Staff Writer
November 20, 2024
3 min read
Supreme Court justice revisits Michael Sandel’s class, which left her with lessons that lasted l
Supreme Court justice revisits Michael Sandel’s class, which left her with lessons that lasted long beyond her time in it as first-year
In a passage from “Lovely One,” Supreme Court Justice Ketanji Brown Jackson ’92, J.D. ’96, is a Harvard College first-year drawing a smiley face in her notes for the course “Justice.”
“I want to laugh at the way my mind spins as I listen to the opinions being expressed,” she writes in a College essay excerpted in the new memoir. “I want to know the answers. I glimpse that there are no answers. Yet to wonder is not enough. We must never stop asking the questions.”
On Tuesday, Jackson was met by 800-plus smiles — and a standing ovation — as she returned to visit a course that proved influential in her life. Welcoming her at Sanders Theatre was Michael J. Sandel, the Anne T. and Robert M. Bass Professor of Government, who has taught “Justice” since 1980. Jackson credits Sandel’s Gen Ed offering with building her confidence while instilling a passion for healthy debate.
“I felt myself expanding and growing more visible to myself as I engaged the great philosophical conundrums,” she writes in the book. “The animated discussions about open-ended ethical dilemmas made me come completely alive.”
Seated with Jackson under the bright stage lights, Sandel invited students to engage with the issue of affirmative action while drawing on insights from influential philosophers, ancient and modern. Primary readings this semester include works from Aristotle, Immanuel Kant, and John Rawls. But the syllabus also features the 2022 U.S. Supreme Court decision rejecting affirmative-action policies at Harvard College and the University of North Carolina.
Some students lined up to share responses to Jackson’s dissent in the UNC case. (She recused herself in the case of Harvard, having served on its Board of Overseers.) Jackson may have been a quiet participant in “Justice” three decades ago, as she notes in the book. But she was much less so on her return to the two-hour lecture as she laid out her legal and moral reasoning on affirmative action. The whole exchange was off the record.
Taking the stage to address the class for the final 45 minutes of the session was Margaret Marshall, Ed.M. ’69, former chief justice of the Supreme Judicial Court of Massachusetts. Sandel assigned students to read her 2003 opinion in Goodridge v. Department of Public Health, which established the right to same-sex marriage for the first time in U.S. history. Sandel said that Marshall’s opinion is a rare piece of legal writing with the resonance of prayer. It has found second life as a popular reading at weddings nationwide.
A visionary gift from Pamela Galli AO will sustain and advance research into neurodevelopmental disorders, skin cancer prevention and treatments, as well as enabling new areas of investigation and research collaboration.
A visionary gift from Pamela Galli AO will sustain and advance research into neurodevelopmental disorders, skin cancer prevention and treatments, as well as enabling new areas of investigation and research collaboration.
Each year on World Philosophy Day on 21 November, people around the globe are invited to reflect on the role philosophy plays in shaping our understanding of the world.Philosophy, meaning ‘love of wisdom’, is interpreted differently by different people, and this diversity of interpretation is one of its most enduring strengths. For some, it’s an intellectual pursuit, a way of seeking deep truths about existence, morality, and knowledge. For others, it’s simply a practical guide to living more me
Each year on World Philosophy Day on 21 November, people around the globe are invited to reflect on the role philosophy plays in shaping our understanding of the world.
Philosophy, meaning ‘love of wisdom’, is interpreted differently by different people, and this diversity of interpretation is one of its most enduring strengths. For some, it’s an intellectual pursuit, a way of seeking deep truths about existence, morality, and knowledge. For others, it’s simply a practical guide to living more meaningfully.
For final-year Philosophy major Christopher Chin, the understanding of philosophy challenges our norms and forces us to grow, while final-year History and Philosophy double major Sofia Marliini Heikkonen believes it offers the privilege of interrogating life.
Dr Daryl Ooi, a lecturer at the Department of Philosophy agrees, saying that, “Philosophy is one of the activities humans practice when we’re trying to figure out how to relate and orientate ourselves to this exciting, complex and confusing world we live in.”
Fundamentally, however, philosophy is a way of thinking that cuts to the heart of what it means to be human.
‘Confucius says…’
The foundational ideas established by many great thinkers and philosophers like Socrates, Plato, and Aristotle have shaped our understanding of the world. These renowned philosophers pioneered the use of reason and logic to explore the workings of the universe while delving into the complexities of human morality.
Although Confucius lived around 500 BC, some 2,500 years ago, today he remains synonymous with wisdom and insights into life. The expression ‘Confucius says...’ is often cited when imparting general wisdom, exemplifying how philosophy transcends time and generations.
In the context of retaliation, for example – whether in war or conflict – one might consider Confucius’ wise words before determining a course of action: ‘Before you embark on a journey of revenge, dig two graves.’
“A common misunderstanding about philosophy is that it’s purely abstract and impractical, dealing only with questions that have no real-world impact. In reality, many of the questions discussed in philosophy have significant real-world implications,” said the Department’s Assistant Professor Song Moonyoung.
A compass for the modern world
Some may question the relevance of philosophical thinking today given the proliferation of science and technology that comes with the promise to simplify our lives and even make decisions on our behalf. Philosophers, however, agree that as the world changes rapidly through technology and social upheaval, the role of philosophy will only grow in importance.
Dr Ooi believes that as long as humans continue to ask big and narrow questions about the world today and attempt to make sense of their beliefs, values, emotions and ideas, philosophy will continue to endure.
Likewise, Asst Prof Song believes philosophy is even more relevant in a time when science and technology are at the forefront. “Philosophy encourages us to consider the ethical implications of technological advancements, such as artificial intelligence (AI) and genetic engineering, and guides us in making thoughtful, responsible choices about their development and use,” she says.
Assoc Prof Loy views philosophy as one part of a much larger repertoire now available to modern humanity. Its strength stems not from disregarding developments in other fields and domains, but from working in tandem with them. “Take artificial intelligence or AI for example. I have been drawn to research projects that look into how AI will affect education because it involves contributions from social science, data science, computer science and many others,” he says.
Related to that is the complex task of developing a practical governing framework for the development of AI and, even more critically, the ethics of its application. Dr Ooi, himself a former student of Assoc Prof Loy, says that the intricacy of such tasks is precisely the reason we recognise the value of interdisciplinary education.
He explains, “We need specialists from different disciplines to work together – and philosophers certainly have much to contribute towards the development or shaping of any kind of moral framework that would support the development and application of AI. Get a philosopher in the room to ask questions about ethics and morality, or even what it means to be human. This will trigger some incredibly meaningful and important conversations, and sometimes, you may even get something like an answer!”
Assoc Prof Loy, who is also Vice Dean (Academic Affairs) for NUS College, adds that he sees philosophers as some of the most interested and equipped people to discuss complex issues, not necessarily by supplying any ready-made “moral framework”, but simply by being people who are keen on thinking very carefully and working with experts from other technical disciplines.
Expanding on this perspective, Asst Prof Song, who specialises in the philosophy of art, notes that the increasing integration of AI into our lives invites us to reflect on what truly defines humanity. The answer may not lie in what we can do better than AI. Instead, what makes us special may indeed be our limitations, such as the fact that humans have physical bodies that inevitably age and perish.
She adds, “These limitations give human achievements – such as artwork – a completely different meaning, even if, on the surface, they may look similar to AI-created products.”
In recent years, mental health has become another area where philosophy provides a unique lens through which we can understand and address psychological well-being. Commenting on the role of philosophy or philosophical ideas in mental health treatment or in helping people cope with mental health challenges, Dr Ooi highlights the increasing attention given to the therapeutic value of philosophical ideas.
He says, “The idea of ‘care for the soul’ and ‘care for the self’ is a historically important one that is of immense relevance for us today, and there are many important philosophical questions that we can ask that are highly relevant to issues surrounding mental health today. For instance, how do we understand the obligations individuals have to care for one another, should education systems have an ethical responsibility to ensure that students do not suffer certain harms, or how can individuals and societies understand values such as ‘respect’ and ‘dignity’ so that those values shape the way humans treat each other?”
Many of the tools employed in philosophy and the intellectual dispositions it nurtures have broad applications – particularly in instances where careful reasoning is needed or when navigating any situations without any clear precedents. This intellectual rigour is what has drawn some undergraduates to take up Philosophy to complement other fields of study, recognising the value of the discipline’s critical thinking and reasoning skills.
Joan Lim, a final-year Philosophy and Life Sciences double degree student, was first introduced to Philosophy in secondary school.
Joan was part of the pioneering batch at the College of Humanities and Sciences and says she jumped at the opportunity to take two contrasting degrees, believing in the importance of an interdisciplinary education to gain a deeper understanding of our increasingly complex and interconnected world.
“I feel that the disciplines are complementary because science needs to be ethically applied, and the humanities benefit from the real-world grounding from the sciences. Fields such as AI and sustainability consider the best ways to apply science and technology such that harm may be reduced; a purely scientific approach may lack that moral analysis.”
Armed with the insights gained from her philosophy studies, Joan is looking for a career that will allow her to contribute to the field of sustainability, another existential challenge for mankind. “I hope to provide an ethical and logical lens for analysing complex issues such as sustainability and AI, but also in the vein of the philosophical training that I have received here at NUS, one which is empathetic and kind,” she says.
Marliini, who has always felt very strongly about diversity, representation and inclusivity, is looking for opportunities to build bridges within the communities around her. “I'm still discovering what exactly my career will look like post-graduation, and what excites me is the prospect of fostering environments where people feel empowered, accepted and connected.”
Beyond its influence on society, Christopher believes that philosophy’s teachings have made an impact on his personal relationships.
“The clarity and discernment that philosophy teaches us should be channelled towards goodness. It reminds us to be compassionate because as (Chinese Confucian philosopher) Mengzi suggests, all humans have the heart of compassion. Whatever the psychological pain, I believe being compassionate, empathetic, and present should be our first response,” says Christopher, reflecting on the wisdom drawn from philosophy when dealing with friends and loved ones in need.
Enduring influence in shaping humanity
From artificial intelligence to mental health, philosophy offers a powerful lens for understanding and navigating the complexities of contemporary life. Whether for those immersed in academic inquiry or individuals looking for clarity in a fast-paced world, philosophy provides a space for thoughtful reflection, grounded in the search for truth and meaning.
Assoc Prof Loy has noted how students get to have a lot of intellectual fun reading philosophy while giving them leverage for other intellectual pursuits.
“Everyone stands to gain from the process of philosophical inquiry,” says Marliini. “The skills we learn are beneficial far beyond academics because philosophy at its core teaches us how to hold space for different perspectives while maintaining the rigour to examine and articulate our own.”
In the words of Peter Singer, one of the most highly regarded modern philosophers alive today, “Philosophy ought to question the basic assumptions of the age. Thinking through, critically and carefully, what most of us take for granted is, I believe, the chief task of philosophy, and the task that makes philosophy a worthwhile activity.”
Acoustic metamaterials — architected materials that have tailored geometries designed to control the propagation of acoustic or elastic waves through a medium — have been studied extensively through computational and theoretical methods. Physical realizations of these materials to date have been restricted to large sizes and low frequencies.“The multifunctionality of metamaterials — being simultaneously lightweight and strong while having tunable acoustic properties — make them great candidates
Acoustic metamaterials — architected materials that have tailored geometries designed to control the propagation of acoustic or elastic waves through a medium — have been studied extensively through computational and theoretical methods. Physical realizations of these materials to date have been restricted to large sizes and low frequencies.
“The multifunctionality of metamaterials — being simultaneously lightweight and strong while having tunable acoustic properties — make them great candidates for use in extreme-condition engineering applications,” explains Carlos Portela, the Robert N. Noyce Career Development Chair and assistant professor of mechanical engineering at MIT. “But challenges in miniaturizing and characterizing acoustic metamaterials at high frequencies have hindered progress towards realizing advanced materials that have ultrasonic-wave control capabilities.”
A new study coauthored by Portela; Rachel Sun, Jet Lem, and Yun Kai of the MIT Department of Mechanical Engineering (MechE); and Washington DeLima of the U.S. Department of Energy Kansas City National Security Campus presents a design framework for controlling ultrasound wave propagation in microscopic acoustic metamaterials. A paper on the work, “Tailored Ultrasound Propagation in Microscale Metamaterials via Inertia Design,” was recently published in the journal Science Advances.
“Our work proposes a design framework based on precisely positioning microscale spheres to tune how ultrasound waves travel through 3D microscale metamaterials,” says Portela. “Specifically, we investigate how placing microscopic spherical masses within a metamaterial lattice affect how fast ultrasound waves travel throughout, ultimately leading to wave guiding or focusing responses.”
Through nondestructive, high-throughput laser-ultrasonics characterization, the team experimentally demonstrates tunable elastic-wave velocities within microscale materials. They use the varied wave velocities to spatially and temporally tune wave propagation in microscale materials, also demonstrating an acoustic demultiplexer (a device that separates one acoustic signal into multiple output signals). The work paves the way for microscale devices and components that could be useful for ultrasound imaging or information transmission via ultrasound.
“Using simple geometrical changes, this design framework expands the tunable dynamic property space of metamaterials, enabling straightforward design and fabrication of microscale acoustic metamaterials and devices,” says Portela.
The research also advances experimental capabilities, including fabrication and characterization, of microscale acoustic metamaterials toward application in medical ultrasound and mechanical computing applications, and underscores the underlying mechanics of ultrasound wave propagation in metamaterials, tuning dynamic properties via simple geometric changes and describing these changes as a function of changes in mass and stiffness. More importantly, the framework is amenable to other fabrication techniques beyond the microscale, requiring merely a single constituent material and one base 3D geometry to attain largely tunable properties.
“The beauty of this framework is that it fundamentally links physical material properties to geometric features. By placing spherical masses on a spring-like lattice scaffold, we could create direct analogies for how mass affects quasi-static stiffness and dynamic wave velocity,” says Sun, first author of the study. “I realized that we could obtain hundreds of different designs and corresponding material properties regardless of whether we vibrated or slowly compressed the materials.”
Acoustic metamaterials — architected materials that have tailored geometries designed to control the propagation of acoustic or elastic waves through a medium — have been studied extensively through computational and theoretical methods. Physical realizations of these materials to date have been restricted to large sizes and low frequencies.“The multifunctionality of metamaterials — being simultaneously lightweight and strong while having tunable acoustic properties — make them great candidates
Acoustic metamaterials — architected materials that have tailored geometries designed to control the propagation of acoustic or elastic waves through a medium — have been studied extensively through computational and theoretical methods. Physical realizations of these materials to date have been restricted to large sizes and low frequencies.
“The multifunctionality of metamaterials — being simultaneously lightweight and strong while having tunable acoustic properties — make them great candidates for use in extreme-condition engineering applications,” explains Carlos Portela, the Robert N. Noyce Career Development Chair and assistant professor of mechanical engineering at MIT. “But challenges in miniaturizing and characterizing acoustic metamaterials at high frequencies have hindered progress towards realizing advanced materials that have ultrasonic-wave control capabilities.”
A new study coauthored by Portela; Rachel Sun, Jet Lem, and Yun Kai of the MIT Department of Mechanical Engineering (MechE); and Washington DeLima of the U.S. Department of Energy Kansas City National Security Campus presents a design framework for controlling ultrasound wave propagation in microscopic acoustic metamaterials. A paper on the work, “Tailored Ultrasound Propagation in Microscale Metamaterials via Inertia Design,” was recently published in the journal Science Advances.
“Our work proposes a design framework based on precisely positioning microscale spheres to tune how ultrasound waves travel through 3D microscale metamaterials,” says Portela. “Specifically, we investigate how placing microscopic spherical masses within a metamaterial lattice affect how fast ultrasound waves travel throughout, ultimately leading to wave guiding or focusing responses.”
Through nondestructive, high-throughput laser-ultrasonics characterization, the team experimentally demonstrates tunable elastic-wave velocities within microscale materials. They use the varied wave velocities to spatially and temporally tune wave propagation in microscale materials, also demonstrating an acoustic demultiplexer (a device that separates one acoustic signal into multiple output signals). The work paves the way for microscale devices and components that could be useful for ultrasound imaging or information transmission via ultrasound.
“Using simple geometrical changes, this design framework expands the tunable dynamic property space of metamaterials, enabling straightforward design and fabrication of microscale acoustic metamaterials and devices,” says Portela.
The research also advances experimental capabilities, including fabrication and characterization, of microscale acoustic metamaterials toward application in medical ultrasound and mechanical computing applications, and underscores the underlying mechanics of ultrasound wave propagation in metamaterials, tuning dynamic properties via simple geometric changes and describing these changes as a function of changes in mass and stiffness. More importantly, the framework is amenable to other fabrication techniques beyond the microscale, requiring merely a single constituent material and one base 3D geometry to attain largely tunable properties.
“The beauty of this framework is that it fundamentally links physical material properties to geometric features. By placing spherical masses on a spring-like lattice scaffold, we could create direct analogies for how mass affects quasi-static stiffness and dynamic wave velocity,” says Sun, first author of the study. “I realized that we could obtain hundreds of different designs and corresponding material properties regardless of whether we vibrated or slowly compressed the materials.”
In 2015, 195 nations plus the European Union signed the Paris Agreement and pledged to undertake plans designed to limit the global temperature increase to 1.5 degrees Celsius. Yet in 2023, the world exceeded that target for most, if not all of, the year — calling into question the long-term feasibility of achieving that target.To do so, the world must reduce the levels of greenhouse gases in the atmosphere, and strategies for achieving levels that will “stabilize the climate” have been both pro
In 2015, 195 nations plus the European Union signed the Paris Agreement and pledged to undertake plans designed to limit the global temperature increase to 1.5 degrees Celsius. Yet in 2023, the world exceeded that target for most, if not all of, the year — calling into question the long-term feasibility of achieving that target.
To do so, the world must reduce the levels of greenhouse gases in the atmosphere, and strategies for achieving levels that will “stabilize the climate” have been both proposed and adopted. Many of those strategies combine dramatic cuts in carbon dioxide (CO2) emissions with the use of direct air capture (DAC), a technology that removes CO2 from the ambient air. As a reality check, a team of researchers in the MIT Energy Initiative (MITEI) examined those strategies, and what they found was alarming: The strategies rely on overly optimistic — indeed, unrealistic — assumptions about how much CO2 could be removed by DAC. As a result, the strategies won’t perform as predicted. Nevertheless, the MITEI team recommends that work to develop the DAC technology continue so that it’s ready to help with the energy transition — even if it’s not the silver bullet that solves the world’s decarbonization challenge.
DAC: The promise and the reality
Including DAC in plans to stabilize the climate makes sense. Much work is now under way to develop DAC systems, and the technology looks promising. While companies may never run their own DAC systems, they can already buy “carbon credits” based on DAC. Today, a multibillion-dollar market exists on which entities or individuals that face high costs or excessive disruptions to reduce their own carbon emissions can pay others to take emissions-reducing actions on their behalf. Those actions can involve undertaking new renewable energy projects or “carbon-removal” initiatives such as DAC or afforestation/reforestation (planting trees in areas that have never been forested or that were forested in the past).
DAC-based credits are especially appealing for several reasons, explains Howard Herzog, a senior research engineer at MITEI. With DAC, measuring and verifying the amount of carbon removed is straightforward; the removal is immediate, unlike with planting forests, which may take decades to have an impact; and when DAC is coupled with CO2 storage in geologic formations, the CO2 is kept out of the atmosphere essentially permanently — in contrast to, for example, sequestering it in trees, which may one day burn and release the stored CO2.
Will current plans that rely on DAC be effective in stabilizing the climate in the coming years? To find out, Herzog and his colleagues Jennifer Morris and Angelo Gurgel, both MITEI principal research scientists, and Sergey Paltsev, a MITEI senior research scientist — all affiliated with the MIT Center for Sustainability Science and Strategy (CS3) — took a close look at the modeling studies on which those plans are based.
Their investigation identified three unavoidable engineering challenges that together lead to a fourth challenge — high costs for removing a single ton of CO2 from the atmosphere. The details of their findings are reported in a paper published in the journal One Earth on Sept. 20.
Challenge 1: Scaling up
When it comes to removing CO2 from the air, nature presents “a major, non-negotiable challenge,” notes the MITEI team: The concentration of CO2 in the air is extremely low — just 420 parts per million, or roughly 0.04 percent. In contrast, the CO2 concentration in flue gases emitted by power plants and industrial processes ranges from 3 percent to 20 percent. Companies now use various carbon capture and sequestration (CCS) technologies to capture CO2 from their flue gases, but capturing CO2 from the air is much more difficult. To explain, the researchers offer the following analogy: “The difference is akin to needing to find 10 red marbles in a jar of 25,000 marbles of which 24,990 are blue [the task representing DAC] versus needing to find about 10 red marbles in a jar of 100 marbles of which 90 are blue [the task for CCS].”
Given that low concentration, removing a single metric ton (tonne) of CO2 from air requires processing about 1.8 million cubic meters of air, which is roughly equivalent to the volume of 720 Olympic-sized swimming pools. And all that air must be moved across a CO2-capturing sorbent — a feat requiring large equipment. For example, one recently proposed design for capturing 1 million tonnes of CO2 per year would require an “air contactor” equivalent in size to a structure about three stories high and three miles long.
Recent modeling studies project DAC deployment on the scale of 5 to 40 gigatonnes of CO2 removed per year. (A gigatonne equals 1 billion metric tonnes.) But in their paper, the researchers conclude that the likelihood of deploying DAC at the gigatonne scale is “highly uncertain.”
Challenge 2: Energy requirement
Given the low concentration of CO2 in the air and the need to move large quantities of air to capture it, it’s no surprise that even the best DAC processes proposed today would consume large amounts of energy — energy that’s generally supplied by a combination of electricity and heat. Including the energy needed to compress the captured CO2 for transportation and storage, most proposed processes require an equivalent of at least 1.2 megawatt-hours of electricity for each tonne of CO2 removed.
The source of that electricity is critical. For example, using coal-based electricity to drive an all-electric DAC process would generate 1.2 tonnes of CO2 for each tonne of CO2 captured. The result would be a net increase in emissions, defeating the whole purpose of the DAC. So clearly, the energy requirement must be satisfied using either low-carbon electricity or electricity generated using fossil fuels with CCS. All-electric DAC deployed at large scale — say, 10 gigatonnes of CO2 removed annually — would require 12,000 terawatt-hours of electricity, which is more than 40 percent of total global electricity generation today.
Electricity consumption is expected to grow due to increasing overall electrification of the world economy, so low-carbon electricity will be in high demand for many competing uses — for example, in power generation, transportation, industry, and building operations. Using clean electricity for DAC instead of for reducing CO2 emissions in other critical areas raises concerns about the best uses of clean electricity.
Many studies assume that a DAC unit could also get energy from “waste heat” generated by some industrial process or facility nearby. In the MITEI researchers’ opinion, “that may be more wishful thinking than reality.” The heat source would need to be within a few miles of the DAC plant for transporting the heat to be economical; given its high capital cost, the DAC plant would need to run nonstop, requiring constant heat delivery; and heat at the temperature required by the DAC plant would have competing uses, for example, for heating buildings. Finally, if DAC is deployed at the gigatonne per year scale, waste heat will likely be able to provide only a small fraction of the needed energy.
Challenge 3: Siting
Some analysts have asserted that, because air is everywhere, DAC units can be located anywhere. But in reality, siting a DAC plant involves many complex issues. As noted above, DAC plants require significant amounts of energy, so having access to enough low-carbon energy is critical. Likewise, having nearby options for storing the removed CO2 is also critical. If storage sites or pipelines to such sites don’t exist, major new infrastructure will need to be built, and building new infrastructure of any kind is expensive and complicated, involving issues related to permitting, environmental justice, and public acceptability — issues that are, in the words of the researchers, “commonly underestimated in the real world and neglected in models.”
Two more siting needs must be considered. First, meteorological conditions must be acceptable. By definition, any DAC unit will be exposed to the elements, and factors like temperature and humidity will affect process performance and process availability. And second, a DAC plant will require some dedicated land — though how much is unclear, as the optimal spacing of units is as yet unresolved. Like wind turbines, DAC units need to be properly spaced to ensure maximum performance such that one unit is not sucking in CO2-depleted air from another unit.
Challenge 4: Cost
Considering the first three challenges, the final challenge is clear: the cost per tonne of CO2 removed is inevitably high. Recent modeling studies assume DAC costs as low as $100 to $200 per ton of CO2 removed. But the researchers found evidence suggesting far higher costs.
To start, they cite typical costs for power plants and industrial sites that now use CCS to remove CO2 from their flue gases. The cost of CCS in such applications is estimated to be in the range of $50 to $150 per ton of CO2 removed. As explained above, the far lower concentration of CO2 in the air will lead to substantially higher costs.
As explained under Challenge 1, the DAC units needed to capture the required amount of air are massive. The capital cost of building them will be high, given labor, materials, permitting costs, and so on. Some estimates in the literature exceed $5,000 per tonne captured per year.
Then there are the ongoing costs of energy. As noted under Challenge 2, removing 1 tonne of CO2 requires the equivalent of 1.2 megawatt-hours of electricity. If that electricity costs $0.10 per kilowatt-hour, the cost of just the electricity needed to remove 1 tonne of CO2 is $120. The researchers point out that assuming such a low price is “questionable,” given the expected increase in electricity demand, future competition for clean energy, and higher costs on a system dominated by renewable — but intermittent — energy sources.
Then there’s the cost of storage, which is ignored in many DAC cost estimates.
Clearly, many considerations show that prices of $100 to $200 per tonne are unrealistic, and assuming such low prices will distort assessments of strategies, leading them to underperform going forward.
The bottom line
In their paper, the MITEI team calls DAC a “very seductive concept.” Using DAC to suck CO2 out of the air and generate high-quality carbon-removal credits can offset reduction requirements for industries that have hard-to-abate emissions. By doing so, DAC would minimize disruptions to key parts of the world’s economy, including air travel, certain carbon-intensive industries, and agriculture. However, the world would need to generate billions of tonnes of CO2 credits at an affordable price. That prospect doesn’t look likely. The largest DAC plant in operation today removes just 4,000 tonnes of CO2 per year, and the price to buy the company’s carbon-removal credits on the market today is $1,500 per tonne.
The researchers recognize that there is room for energy efficiency improvements in the future, but DAC units will always be subject to higher work requirements than CCS applied to power plant or industrial flue gases, and there is not a clear pathway to reducing work requirements much below the levels of current DAC technologies.
Nevertheless, the researchers recommend that work to develop DAC continue “because it may be needed for meeting net-zero emissions goals, especially given the current pace of emissions.” But their paper concludes with this warning: “Given the high stakes of climate change, it is foolhardy to rely on DAC to be the hero that comes to our rescue.”
In 2015, 195 nations plus the European Union signed the Paris Agreement and pledged to undertake plans designed to limit the global temperature increase to 1.5 degrees Celsius. Yet in 2023, the world exceeded that target for most, if not all of, the year — calling into question the long-term feasibility of achieving that target.To do so, the world must reduce the levels of greenhouse gases in the atmosphere, and strategies for achieving levels that will “stabilize the climate” have been both pro
In 2015, 195 nations plus the European Union signed the Paris Agreement and pledged to undertake plans designed to limit the global temperature increase to 1.5 degrees Celsius. Yet in 2023, the world exceeded that target for most, if not all of, the year — calling into question the long-term feasibility of achieving that target.
To do so, the world must reduce the levels of greenhouse gases in the atmosphere, and strategies for achieving levels that will “stabilize the climate” have been both proposed and adopted. Many of those strategies combine dramatic cuts in carbon dioxide (CO2) emissions with the use of direct air capture (DAC), a technology that removes CO2 from the ambient air. As a reality check, a team of researchers in the MIT Energy Initiative (MITEI) examined those strategies, and what they found was alarming: The strategies rely on overly optimistic — indeed, unrealistic — assumptions about how much CO2 could be removed by DAC. As a result, the strategies won’t perform as predicted. Nevertheless, the MITEI team recommends that work to develop the DAC technology continue so that it’s ready to help with the energy transition — even if it’s not the silver bullet that solves the world’s decarbonization challenge.
DAC: The promise and the reality
Including DAC in plans to stabilize the climate makes sense. Much work is now under way to develop DAC systems, and the technology looks promising. While companies may never run their own DAC systems, they can already buy “carbon credits” based on DAC. Today, a multibillion-dollar market exists on which entities or individuals that face high costs or excessive disruptions to reduce their own carbon emissions can pay others to take emissions-reducing actions on their behalf. Those actions can involve undertaking new renewable energy projects or “carbon-removal” initiatives such as DAC or afforestation/reforestation (planting trees in areas that have never been forested or that were forested in the past).
DAC-based credits are especially appealing for several reasons, explains Howard Herzog, a senior research engineer at MITEI. With DAC, measuring and verifying the amount of carbon removed is straightforward; the removal is immediate, unlike with planting forests, which may take decades to have an impact; and when DAC is coupled with CO2 storage in geologic formations, the CO2 is kept out of the atmosphere essentially permanently — in contrast to, for example, sequestering it in trees, which may one day burn and release the stored CO2.
Will current plans that rely on DAC be effective in stabilizing the climate in the coming years? To find out, Herzog and his colleagues Jennifer Morris and Angelo Gurgel, both MITEI principal research scientists, and Sergey Paltsev, a MITEI senior research scientist — all affiliated with the MIT Center for Sustainability Science and Strategy (CS3) — took a close look at the modeling studies on which those plans are based.
Their investigation identified three unavoidable engineering challenges that together lead to a fourth challenge — high costs for removing a single ton of CO2 from the atmosphere. The details of their findings are reported in a paper published in the journal One Earth on Sept. 20.
Challenge 1: Scaling up
When it comes to removing CO2 from the air, nature presents “a major, non-negotiable challenge,” notes the MITEI team: The concentration of CO2 in the air is extremely low — just 420 parts per million, or roughly 0.04 percent. In contrast, the CO2 concentration in flue gases emitted by power plants and industrial processes ranges from 3 percent to 20 percent. Companies now use various carbon capture and sequestration (CCS) technologies to capture CO2 from their flue gases, but capturing CO2 from the air is much more difficult. To explain, the researchers offer the following analogy: “The difference is akin to needing to find 10 red marbles in a jar of 25,000 marbles of which 24,990 are blue [the task representing DAC] versus needing to find about 10 red marbles in a jar of 100 marbles of which 90 are blue [the task for CCS].”
Given that low concentration, removing a single metric ton (tonne) of CO2 from air requires processing about 1.8 million cubic meters of air, which is roughly equivalent to the volume of 720 Olympic-sized swimming pools. And all that air must be moved across a CO2-capturing sorbent — a feat requiring large equipment. For example, one recently proposed design for capturing 1 million tonnes of CO2 per year would require an “air contactor” equivalent in size to a structure about three stories high and three miles long.
Recent modeling studies project DAC deployment on the scale of 5 to 40 gigatonnes of CO2 removed per year. (A gigatonne equals 1 billion metric tonnes.) But in their paper, the researchers conclude that the likelihood of deploying DAC at the gigatonne scale is “highly uncertain.”
Challenge 2: Energy requirement
Given the low concentration of CO2 in the air and the need to move large quantities of air to capture it, it’s no surprise that even the best DAC processes proposed today would consume large amounts of energy — energy that’s generally supplied by a combination of electricity and heat. Including the energy needed to compress the captured CO2 for transportation and storage, most proposed processes require an equivalent of at least 1.2 megawatt-hours of electricity for each tonne of CO2 removed.
The source of that electricity is critical. For example, using coal-based electricity to drive an all-electric DAC process would generate 1.2 tonnes of CO2 for each tonne of CO2 captured. The result would be a net increase in emissions, defeating the whole purpose of the DAC. So clearly, the energy requirement must be satisfied using either low-carbon electricity or electricity generated using fossil fuels with CCS. All-electric DAC deployed at large scale — say, 10 gigatonnes of CO2 removed annually — would require 12,000 terawatt-hours of electricity, which is more than 40 percent of total global electricity generation today.
Electricity consumption is expected to grow due to increasing overall electrification of the world economy, so low-carbon electricity will be in high demand for many competing uses — for example, in power generation, transportation, industry, and building operations. Using clean electricity for DAC instead of for reducing CO2 emissions in other critical areas raises concerns about the best uses of clean electricity.
Many studies assume that a DAC unit could also get energy from “waste heat” generated by some industrial process or facility nearby. In the MITEI researchers’ opinion, “that may be more wishful thinking than reality.” The heat source would need to be within a few miles of the DAC plant for transporting the heat to be economical; given its high capital cost, the DAC plant would need to run nonstop, requiring constant heat delivery; and heat at the temperature required by the DAC plant would have competing uses, for example, for heating buildings. Finally, if DAC is deployed at the gigatonne per year scale, waste heat will likely be able to provide only a small fraction of the needed energy.
Challenge 3: Siting
Some analysts have asserted that, because air is everywhere, DAC units can be located anywhere. But in reality, siting a DAC plant involves many complex issues. As noted above, DAC plants require significant amounts of energy, so having access to enough low-carbon energy is critical. Likewise, having nearby options for storing the removed CO2 is also critical. If storage sites or pipelines to such sites don’t exist, major new infrastructure will need to be built, and building new infrastructure of any kind is expensive and complicated, involving issues related to permitting, environmental justice, and public acceptability — issues that are, in the words of the researchers, “commonly underestimated in the real world and neglected in models.”
Two more siting needs must be considered. First, meteorological conditions must be acceptable. By definition, any DAC unit will be exposed to the elements, and factors like temperature and humidity will affect process performance and process availability. And second, a DAC plant will require some dedicated land — though how much is unclear, as the optimal spacing of units is as yet unresolved. Like wind turbines, DAC units need to be properly spaced to ensure maximum performance such that one unit is not sucking in CO2-depleted air from another unit.
Challenge 4: Cost
Considering the first three challenges, the final challenge is clear: the cost per tonne of CO2 removed is inevitably high. Recent modeling studies assume DAC costs as low as $100 to $200 per ton of CO2 removed. But the researchers found evidence suggesting far higher costs.
To start, they cite typical costs for power plants and industrial sites that now use CCS to remove CO2 from their flue gases. The cost of CCS in such applications is estimated to be in the range of $50 to $150 per ton of CO2 removed. As explained above, the far lower concentration of CO2 in the air will lead to substantially higher costs.
As explained under Challenge 1, the DAC units needed to capture the required amount of air are massive. The capital cost of building them will be high, given labor, materials, permitting costs, and so on. Some estimates in the literature exceed $5,000 per tonne captured per year.
Then there are the ongoing costs of energy. As noted under Challenge 2, removing 1 tonne of CO2 requires the equivalent of 1.2 megawatt-hours of electricity. If that electricity costs $0.10 per kilowatt-hour, the cost of just the electricity needed to remove 1 tonne of CO2 is $120. The researchers point out that assuming such a low price is “questionable,” given the expected increase in electricity demand, future competition for clean energy, and higher costs on a system dominated by renewable — but intermittent — energy sources.
Then there’s the cost of storage, which is ignored in many DAC cost estimates.
Clearly, many considerations show that prices of $100 to $200 per tonne are unrealistic, and assuming such low prices will distort assessments of strategies, leading them to underperform going forward.
The bottom line
In their paper, the MITEI team calls DAC a “very seductive concept.” Using DAC to suck CO2 out of the air and generate high-quality carbon-removal credits can offset reduction requirements for industries that have hard-to-abate emissions. By doing so, DAC would minimize disruptions to key parts of the world’s economy, including air travel, certain carbon-intensive industries, and agriculture. However, the world would need to generate billions of tonnes of CO2 credits at an affordable price. That prospect doesn’t look likely. The largest DAC plant in operation today removes just 4,000 tonnes of CO2 per year, and the price to buy the company’s carbon-removal credits on the market today is $1,500 per tonne.
The researchers recognize that there is room for energy efficiency improvements in the future, but DAC units will always be subject to higher work requirements than CCS applied to power plant or industrial flue gases, and there is not a clear pathway to reducing work requirements much below the levels of current DAC technologies.
Nevertheless, the researchers recommend that work to develop DAC continue “because it may be needed for meeting net-zero emissions goals, especially given the current pace of emissions.” But their paper concludes with this warning: “Given the high stakes of climate change, it is foolhardy to rely on DAC to be the hero that comes to our rescue.”
Penn fourth-year Om Gandhi, from Barrington, Illinois, has been awarded a 2025 Rhodes Scholarship, which funds tuition and a living stipendfor graduate study at the University of Oxford in England. He is among 32 American Rhodes Scholars, and an expected 100 worldwide.
Penn fourth-year Om Gandhi, from Barrington, Illinois, has been awarded a 2025 Rhodes Scholarship, which funds tuition and a living stipendfor graduate study at the University of Oxford in England. He is among 32 American Rhodes Scholars, and an expected 100 worldwide.
Campus & Community
Harvard, MIT, Mass General form renewable energy collaboration
Group will include higher education, healthcare, and cultural institutions, seek to leverage buying power to advance cost-effective projects
Amy Kamosa
Harvard Correspondent
November 20, 2024
4 min read
The Big Elm Solar Project located in Bell County, Texas, came online this year.Credit: Apex Energy
Har
Harvard, MIT, Mass General form renewable energy collaboration
Group will include higher education, healthcare, and cultural institutions, seek to leverage buying power to advance cost-effective projects
Amy Kamosa
Harvard Correspondent
4 min read
Harvard announced on Wednesday the formation of the Consortium for Climate Solutions, a first-of-its-kind renewable energy collaboration of higher education, healthcare, and cultural institutions, as well as state and local government entities, led by Harvard, Mass General Brigham (MGB), and the Massachusetts Institute of Technology (MIT).
The consortium will leverage its members’ collective purchasing power to overcome market conditions that serve as barriers to development of projects that advance cost-effective renewable energy and allow for larger-scale investment.
“With these new utility-scale renewable electricity projects, Harvard will purchase the equivalent of 100 percent of its electricity from renewable sources, fulfilling a key component of our approach to meet our goal to be fossil fuel-neutral by 2026.”
Heather Henriksen, chief sustainability officer
“Investing in new, large-scale renewables marks a significant step forward for Harvard in its commitment to a clean energy future,” said Meredith Weenick, executive vice president. “By founding the consortium with MIT and MGB, we are not only catalyzing the transition to a cleaner grid but also demonstrating a collaboration model that will enable a variety of nonprofit organizations and municipalities to work together to address the urgent challenges of climate change.”
The consortium recently finalized negotiations that will result in the development of 408 megawatts of new renewable energy through two large-scale, utility-grade projects — the Big Elm Solar in Bell County, Texas, and the Bowman Wind Project in Bowman County, North Dakota. The 200-megawatt Big Elm Solar project came online earlier this year, and the 208-megawatt Bowman Wind project is expected to come online in 2026. Collectively these projects will generate clean power equal to the electricity use of 130,000 U.S. homes annually.
“With these new utility-scale renewable electricity projects, Harvard will purchase the equivalent of 100 percent of its electricity from renewable sources, fulfilling a key component of our approach to meet our goal to be fossil fuel-neutral by 2026, while we simultaneously work on the longer-term effort to decarbonize our historic and urban campus,” explained Heather Henriksen, Harvard’s chief sustainability officer.
Achieving fossil-fuel neutrality by 2026 is a bridging strategy to mitigate the negative impact of fossil fuels on emission levels and air pollution while the University develops longer-term technology and infrastructure changes to eliminate its use of fossil fuels by 2050. In addition to purchasing electricity from renewable sources, the University looks to seek greater energy efficiency and heat recovery on campus, replace fossil-fuel equipment at the end of life, increase its electric vehicle fleet, and find other reductions of fossil-fuel use.
“There is plenty of scientific evidence that fossil fuels are negatively impacting health, community stability, and ecosystems around the world. As Harvard continues on its path to become a fossil fuel-free campus, it is critical that the University not only conduct research on how to drive down global emissions and bolster adaptation, but to use our purchasing power to help produce cost-effective renewable energy solutions at scale,” said Mike Toffel, the Senator John Heinz Professor of Environmental Management at Harvard Business School, faculty chair of the Business and Environment Initiative at HBS, and co-chair of the Presidential Committee on Sustainability. “The consortium is an excellent example of engaging with the renewable electricity markets to expand their scale and impact.”
The consortium founding members, Harvard, MGB, and MIT, sought opportunities to collaborate with smaller nonprofits and municipalities. This resulted in the partnership with PowerOptions, a nonprofit energy-buying organization, enabling the city of Cambridge, Beth Israel Lahey, Boston Children’s Hospital, Dana-Farber Cancer Institute, Tufts University, the Mass. Convention Center Authority, the Museum of Fine Arts, and WGBH to join under the PowerOptions umbrella. The consortium is providing PowerOptions members with access to affordable, large-scale renewable energy purchases that would typically be out of reach for individual buyers.
The creation of the consortium, supported by Harvard’s leadership, was led by the Office for Sustainability working with faculty and other key stakeholders. The projects chosen for investment align with the recommendations and criteria set forth by the Fossil Fuel-Neutral by 2026 Subcommittee of the University’s Presidential Committee on Sustainability. The consortium vetted more than 100 potential projects, ultimately choosing the Big Elm Solar and Bowman Wind projects from developer Apex Clean Energy.
Locally, the consortium’s power-purchase agreements with the Big Elm and Bowman projects will enable its members to accelerate progress toward their individual sustainability goals consistent with local emissions-reduction regulatory targets, while simultaneously reducing fossil fuel emissions at a national scale.
“The locations and scale of each project, in two of the most carbon-intensive electrical grid regions in the United States, mean that the potential positive impact is significant, creating a more robust and cleaner grid,” explained Henriksen.
A new Humanities Initiative provides structure and support to supercharge scholarship, teaching and public collaborations for the 21st century and beyond.
A new Humanities Initiative provides structure and support to supercharge scholarship, teaching and public collaborations for the 21st century and beyond.
Health
Rapid relief for the severely depressed? There’s a catch.
Liz Mineo
Harvard Staff Writer
November 20, 2024
6 min read
Ketamine carries risks, say researchers. Yet for some patients, it’s ‘the only thing that works.’
At the Ketamine Clinic for Depression at Massachusetts General Hospital, patients make their way each day to receive intravenous infusions of the powerful anesthetic
Rapid relief for the severely depressed? There’s a catch.
Liz Mineo
Harvard Staff Writer
6 min read
Ketamine carries risks, say researchers. Yet for some patients, it’s ‘the only thing that works.’
At the Ketamine Clinic for Depression at Massachusetts General Hospital, patients make their way each day to receive intravenous infusions of the powerful anesthetic that has become an alternative therapy for treatment-resistant depression.
Many of the clinic’s patients have not been helped by traditional treatments, including psychological counseling, antidepressant medication, transcranial magnetic stimulation, and electroconvulsive therapy. With its rapid antidepressant effects, ketamine is sometimes the only option that provides relief, said clinic founder and director Cristina Cusin, who has been researching depression and mood disorders for the past 25 years.
“We don’t have good weapons to treat some severe forms of depression, just like we don’t have treatments for advanced-stage cancer,” said Cusin, who is also an associate professor in psychiatry at Harvard Medical School. “We’re always looking for the next thing so that we can continue to offer hope to patients who don’t respond to standard treatments.”
In 2000, after a study reported that small doses of IV ketamine rapidly reversed symptoms of depression while standard antidepressants often took several weeks to have an effect, ketamine became the next new thing. In 2019, based on years of research, the FDA approved a nasal spray medication, derived from ketamine, to be administered under medical supervision.
Depression is a mental health disorder characterized by feelings of sadness and hopelessness, that affects 18 percent of Americans. One-third of those diagnosed with depression don’t respond to standard treatments, with acute consequences to their personal and professional lives. The stigma associated with depression makes it harder for people to seek treatment, said Cusin.
“There are some forms of depression that have a strong biological component; there are neurocircuits in the brain that are not functioning right. In many cases, it’s not for lack of trying.”
Cristina Cusin
“In our society, if you suffer from depression, you may be told to ‘try harder,’ ‘stop complaining,’ ‘pick yourself up by your bootstraps,’ and so on,” Cusin said. “But there are some forms of depression that have a strong biological component; there are neurocircuits in the brain that are not functioning right. In many cases, it’s not for lack of trying.”
Patients follow a strict protocol to be admitted to the MGH Ketamine Clinic; not only do they have to be referred by their primary prescribers, but also prior treatments for depression must have failed. Ketamine therapy is integrated with other treatments and is done in the clinic under medical supervision and in coordination with patients’ primary medical teams. The clinic doesn’t admit self-referred patients or those with active substance use disorders or a history of psychosis. Ketamine produces hallucinogenic effects and dissociation, which can exacerbate psychotic symptoms.
Other risks associated with ketamine are the possibility of developing addiction and a host of medical problems, but for patients who experience rapid relief from their symptoms of depression after treatment, ketamine is a game-changer, said Cusin. “Our patients have failed other treatments, so they don’t have a lot of other options,” she said. “If this is the only thing that works, they keep coming.”
Scientists continue researching ketamine’s antidepressant effects on treatment-resistant depression. A recent clinical trial found that ketamine was as effective for non-psychotic treatment-resistant depression as electroconvulsive therapy (ECT), which has long been the gold standard for hard-to-treat depression.
Conducted by Amit Anand, professor of psychiatry at Harvard Medical School, the study found that 55 percent of those receiving ketamine and 41 percent of those receiving ECT had at least a 50 percent improvement in their self-reported depression symptoms. Anand co-authored the pivotal 2000 study that revealed the rapid antidepressant effects of ketamine.
Encouraged by his recent study’s results, Anand is conducting a follow-up clinical trial comparing ketamine and ECT treatments among patients with suicidal depression. If ketamine can affect suicidal thoughts, it could be lifesaving. “What we’re trying to see is that if ketamine can cause a very rapid reversal of the troubling kind of depression leading to suicidality,” he said. “People are suffering, and even if it is for a short time, it is beneficial to provide a rapid change.”
“What we’re trying to see is that if ketamine can cause a very rapid reversal of the troubling kind of depression leading to suicidality.”
Amit Anand
Even though doctors and researchers are hopeful regarding the promise of ketamine, there is growing concern about the proliferation of private ketamine clinics, which began to crop up around the country after restrictions on telemedicine relaxed during the pandemic. These clinics offer IV ketamine infusions, with prices ranging from $600 to $800 per infusion.
Most ketamine private clinics operate in a gray zone, with almost no oversight, and function as for-profit businesses, said Peter Grinspoon, a primary care physician, educator, and cannabis specialist at MGH.
“The end result is that now our population has broad access to ketamine, and it’s a little bit of an uncontrolled experiment,” said Grinspoon. “Whether it’s going to alleviate many people’s depression or whether it’s going to get a lot of people addicted to ketamine is going to be an open question. We don’t know how much it is going to help or harm things.”
Ketamine is not nearly as addictive as alcohol or opioids, but its use as a recreational drug poses serious risks. Actor Matthew Perry died last year of “acute effects of ketamine.” His autopsy also found opioids in his blood, but the level of ketamine found was equivalent to the amount that would be used during general anesthesia.
The other troubling issue for Grinspoon is affordability. “I work as a primary care doctor in an inner-city clinic,” he said. “None of my patients can afford six $800 injections. … The last thing we need is for ketamine to be another treatment for just the well to-do. … This has got to be affordable.”
At the MGH clinic, patients receive low doses of ketamine in long intervals and have mixed experiences. While some report feeling relaxed, others find it unpleasant, but most said their symptoms of depression improve and don’t interfere with day-to-day functioning. Still,
Cusin warns that ketamine should not be a first-option treatment for depression.
“If someone is depressed or suicidal, there are alternatives out there,” said Cusin. “There are 50, 80 different treatments to consider. It’s rare that somebody has tried everything. Usually, there are entire classes of medications or treatments that have not been considered. There is always hope.”
Campus & Community
Culture Lab Innovation Fund grants awarded to 12 projects
Grant recipients foster a culture of innovation and belonging on Harvard campus
Laurie Rodriguez
Harvard Correspondent
November 20, 2024
6 min read
The Lighting for Diverse Skin Tones project holding an in-person lighting master class for Harvard media professionals. Photo by Julia King
Twelve projects have r
Culture Lab Innovation Fund grants awarded to 12 projects
Grant recipients foster a culture of innovation and belonging on Harvard campus
Laurie Rodriguez
Harvard Correspondent
6 min read
Twelve projects have recently been awarded grants from the Harvard Culture Lab Innovation Fund (HCLIF) for the 2024–2025 cycle. Harvard students, faculty, staff, postdoctoral researchers, and fellows submitted grant proposals for projects aimed at fostering an inclusive environment at the University. Each project aligns with HCLIF’s mission to “encourage experimentation, build a culture of inclusion, and grow a network of equity, diversity, inclusion, and belonging innovators at Harvard,” while also supporting the University’s goal of achieving inclusive excellence. Funded by the Office of the President and administered by the Office for Equity, Diversity, Inclusion, and Belonging, these grants range from $5,000 to $15,000.
“Harvard is committed to continuing its investment in innovative ideas that promote a campus culture of inclusion and belonging,” said Sherri Charleston, chief diversity and inclusion officer. “These grassroots projects unite community members at all levels of the University — researchers, students, faculty, postdocs, and staff — who identify pressing campus needs and apply their expertise to develop solutions. From a series exploring faith and justice to a project creating inclusive medical illustrations, the HCLIF projects are transforming ideas into action and making a significant impact.”
“From a series exploring faith and justice to a project creating inclusive medical illustrations, the HCLIF projects are transforming ideas into action and making a significant impact.”
Sherri Charleston, chief diversity and inclusion officer
This year’s project teams showcase cross-University collaboration, with members representing Schools and units from across Harvard.
The awardees include the Lighting for Diverse Skin Tones project, a second-year grant recipient. It is a University-wide training resource that educates video producers and media professionals at Harvard on how to create lighting that captures a variety of skin tones effectively in photography, especially skin tones previously overlooked in photography and film training. With additional funding, they will work to identify a host site for the project and complete editing of previously recorded videos. “This project started with the intention of honing media producers’ skills in the craft of inclusive cinema lighting, but we ended by finding the time and space to really see people and understand how they want to be represented,” said Julia King, creative video producer at the Harvard T.H. Chan School of Public Health, and Jacob Beizer, senior digital content producer and strategist at the Harvard Kennedy School in a statement. “We are excited to provide this resource to the entire Harvard community.”
The Inclusive Anatomical Images project stems from collaborations between Harvard Medical School, Harvard Art Museums, and the University of Global Health Equity based in Rwanda. The project seeks to ensure diverse patients have a higher chance of being better served and aims to improve patient outcomes by creating more inclusive educational medical literature. It creates materials reflecting a diversity of bodies — including various sizes, ancestries, genders, and skin tones — to better serve a wide diversity of patients. With this year’s funding, the team will expand their reach by making their resources more accessible to institutions, researchers, and health professionals beyond Harvard, while expanding their team to meet the demand for their expertise and images. Martha Ellen Katz, a faculty member of the Harvard Medical School, said, “Our project has the potential to validate the life experience of historically excluded patients, physicians, dentists, and student learners at HMS, and curricula worldwide. Our equitable work culture, which strives to be as non-hierarchical as possible, also encourages student leadership and acknowledges the essential contributions of all team members, collaborators, and supporters.”
The Connecting Community Through Food project celebrates Harvard’s student body through food. By collaborating with Harvard College students, student organizations, and employees, the Harvard University Dining Services team aims to develop recipes and menus authored by Harvard undergraduates from a diversity of backgrounds. These meals will be served more regularly in dining halls. Smitha Haneef, executive director of the Harvard University Dining Services, explained, “We want students to experience the dining halls as welcoming, comforting places, hopefully like their home kitchens. For this to happen, the menus must feel like home. This project helps us realize that vision for more community members.”
Additional 2024 HCLIF Recipients
Community Project on Faith and Justice cultivates inclusivity and engagement centered on faith by hosting speaker series and community events where affiliates can explore the influence of faith in their lives.
Disability Awareness Series aims to increase awareness about the resources available for, and challenges faced by, those with disability and accessibility needs at Harvard. It engages Harvard College students, staff, researchers, and faculty through an awareness campaign and series of events.
Disability in Health Professions Mentorship Program cultivates a supportive community for current and future health professionals living with disabilities and chronic illness, fostering a greater sense of belonging at Harvard.
Emerging Scientists Program connects high school students from Cambridge and Boston with Harvard graduate students, postdoctoral researchers, and staff, providing meaningful and accessible life sciences research experiences.
Harvard Career Capsule empowers graduate students by providing professional attire and equipment to support their career development.
Harvard University Peer Coaching Initiative aims to reduce loneliness and enhance interpersonal skills by pairing Harvard students and researchers. Participants engage in weekly sessions over the course of a semester to practice effective listening with one another.
Justice-Impacted Inclusion seeks to make Harvard more inclusive of formerly incarcerated people and others impacted by the justice system. The initiative consults with formerly incarcerated policy experts and creates resources, such as a guide on inclusive language and practices.
LifeSaveHer develops trainings to address misconceptions regarding performing CPR on women, including modifying male CPR mannequins to represent female bodies, ultimately aiming to reduce cardiac arrest survival disparities for women.
Trans+ Community Celebration at Harvard seeks to uplift the trans+ community by creating inclusive spaces within the University.
Applications for the 2025-2026 funding term of Harvard Culture Lab Innovation Fund grants are now open to Harvard students, faculty, staff, postdoctoral researchers, and academic personnel. Harvard community members interested in participating as judges for the 2025-2026 HCLIF grant applications can now sign up.
Getty Images
Health
‘Harvard Thinking’: New frontiers in cancer care
In podcast, experts discuss breakthroughs in treatment, from genomic sequencing to AI, and how close we are to personalized vaccines
Samantha Laine Perfas
Harvard Staff Writer
November 20, 2024
long read
Cancer kills nearly 10 million people worldwide every year, but advances in genomic sequencing, artificial intelligenc
In podcast, experts discuss breakthroughs in treatment, from genomic sequencing to AI, and how close we are to personalized vaccines
Samantha Laine Perfas
Harvard Staff Writer
long read
Cancer kills nearly 10 million people worldwide every year, but advances in genomic sequencing, artificial intelligence, and other technologies are ushering in a new era of treatment.
Alumnus Levi Garraway, who runs late-stage drug development at the biotech company Roche and previously worked at the Dana-Farber Cancer Institute, said the field has come a long way.
“Although cancers may look the same under the microscope, they can be very different when you look at the DNA,” Garraway said. That’s why the pillars of cancer treatment — surgery, radiotherapy, and chemotherapy — are so limited in their applications. Moving to more personalized treatments based on a patient’s genetics has revolutionized the field. “[Genetic sequencing] was one of the first breakthroughs that allowed cancer treatment to start to become a bit more personalized.”
Connie Lehman, a professor of radiology at Harvard Medical School and a breast imaging specialist at Mass General Brigham, said artificial intelligence has shown remarkable promise in detecting breast cancer, with success rates that far exceed what the human eye can detect alone. “What [other industries] are doing in computer vision is just unbelievable. And bringing that into healthcare to improve the lives of our patients is incredibly exciting.”
Treatment and prevention will only become more personalized and effective as researchers continue to explore the human genome and genetic structure of cancers, said Catherine Wu, a professor of medicine and chief of the Division of Stem Cell Transplantation and Cellular Therapies at the Dana-Farber Cancer Institute. One question that drives some of her research: Is it possible to vaccinate against cancer?
“That’s the vision,” said Wu, a recent recipient of the Sjöberg Prize for cancer research. “Can we, for example, make cancer vaccines as available as, say, the COVID vaccine was? That was a huge rollout given to all citizens of our country. How were we able to roll that out quickly and safely?”
In this episode of “Harvard Thinking,” host Samantha Laine Perfas talks with Garraway, Lehman, and Wu about some of their most cutting-edge cancer research — and what hope lies on the horizon.
Transcript
Levi Garraway: And now all of a sudden, it’s not quite such a blunt instrument. You’re able to get a much more selective killing effect of the cancer. Now you have a way to tell in advance who might respond to this treatment. That was one of the first breakthroughs that allowed cancer treatment to start to become a bit more personalized.
Samantha Laine Perfas: Advances in technologies like genomic sequencing and artificial intelligence have ushered in a new era in the fight against cancer, which kills nearly 10 million people worldwide every year. Researchers are now working on therapies that can be genetically tailored to individual patients and they’re also working on methods for discovering cancers at much earlier stages. Someday, we might even have vaccines that can prevent the disease altogether.
How close are we to turning a corner on cancer?
Welcome to “Harvard Thinking,” a podcast where the life of the mind meets everyday life. Today, we’re joined by:
Garraway: Levi Garraway. I run late-stage drug development at Roche, which in the U.S. is known as Genentech.
Laine Perfas: Levi attended Harvard as an undergraduate, graduate, and medical student. He also worked at the Dana-Farber Cancer Institute for 11 years. Then:
Connie Lehman: Connie Lehman. I’m a professor of radiology at Harvard Medical School and I’m a breast imaging specialist at Mass General Brigham.
Laine Perfas: She’s also a founding partner at Clairity, which uses the power of artificial intelligence to better inform precision care. And finally:
Cathy Wu: Cathy Wu. I am a professor of medicine and division chief for transplant and cellular therapies at Dana-Farber Cancer Institute.
Laine Perfas: She was an undergraduate at Harvard and completed her clinical training at the University. Recently she received the Sjöberg Prize for cancer research.
And I’m Samantha Laine Perfas, your host and a writer for The Harvard Gazette. This episode looks at the future of cancer treatment.
Historically, how have we approached cancer treatment and how has that shifted in recent years?
Garraway: Historically you had surgery, you had radiotherapy, and you had chemotherapy. I put historically in quotes because these are all in wide use today, and they’re probably not going anywhere anytime soon. And the reason why they’re not going anywhere is because they actually can be effective in treating many cancers, even curing some cancers, but there are well-known limitations. And of course, I think for all of us who went into this field, it was in part to try to counter those limitations. And one is that there’s a whole lot of cancers that can’t be cured with those therapies, and the other is that these are all blunt instruments. I mean, often you get damage to normal or adjacent cells and tissues as well as cancer cells. And that’s a big problem. You often can’t tell in advance who’s going to respond or who’s not going to respond, for example, to chemotherapy. So it’s a vexing issue when you have a patient and you know they need treatment, but you can’t tell them that they’re going to benefit from a potentially toxic treatment.
Wu: Yeah. I agree with Levi. I think we were taught that the pillars of cancer care have been chemotherapy, radiotherapy, and surgery. I think what’s been exciting in the lifetime that we are going through our training and treating our patients is that we’ve seen so much evolved that there are actually new pillars that have been coming up and so I think that one of the things that kind of worldwide that we’re excited about is immunotherapy because this has emerged as a fourth pillar that is touching on all the different disease types and has proven to be really important.
Lehman: It is really exciting to see this transition to more targeted and more personalized treatment. Also at the other end of the spectrum is, can we actually even prevent cancers? Like, are there domains where we don’t need to wait until they’re so far advanced that cure is really elusive even with the most advanced therapies? So in my part of the sandbox, we’re really focused on early detection and also accurate risk assessment so we can have the right interventions to prevent the cancer from developing. It’s so interesting to look at the changes in how breast cancer presents. You can have women moving from one country to another, to adopting different diets, different lifestyles, and their breast cancer risk goes up within their lifetime. So there are these correlations between modifiable risk factors and lifestyle, diet, exercise, environmental, carcinogens, and how can we be better at identifying those and really stopping the cancer from occurring?
Laine Perfas: Treatment has become a lot more personalized in many ways. The historical treatment, if this is accurate, it seems like it was very much one-size-fits-all. What were some of the problems of that approach and why did that need to change?
Garraway: One major recognition that happened over time is that you could have two women with breast cancer, they’re both called breast cancer, but they behave very differently. They may show up very differently. They respond differently to treatment. There’s now a lot more understanding about why that is. And one big reason is that although cancers may look the same under the microscope, they can be very different when you look at the DNA, the genomes of those cancers. They’ve acquired mutations of various types. Some of them are completely random and they don’t matter to the cancer, but others are critical. They become what we call drivers of the cancer. So when we talk about what made cancer become more personalized, it was the recognition that some of those mutations, they occur over again in certain subsets of cancer, but you can design medicines against the resulting mutated proteins that drive the cancer. And those medicines are now much more selective. Now all of a sudden, it’s not quite such a blunt instrument. You’re able to get a much more selective killing effect of the cancer. Now you have a way to tell in advance who might respond to this treatment. That was one of the first breakthroughs that allowed cancer treatment to start to become a bit more personalized.
Wu: A lot of innovation follows technology. So I think that it’s always been recognized that you can try to do one-size-fits-all. But the reality is that not everyone responds and patients do or do not have toxicities. So I think the kind of technology that has brought so much insight has been through unraveling the molecular secrets of cancer cells through sequencing. I think that very, perhaps, simple technological advance has meant the world to what we understand about cancer now. And at some level, I think that the personalization is what is fighting fire with fire. You’re confronting that heterogeneity up front. You’re not trying to hide from it. You’re acknowledging that it exists and that it actually mandates that we become more selective in terms of how and what we can offer to our patients.
Lehman: I really like how both Levi and Cathy talk about [how] this personalized domain is about getting the fit with the patient and that patient’s tumor and the treatment. We see that in other domains of medicine. So, for example, we can look back at old studies and there was a drug therapy that people were very excited about, and the results were mediocre and everyone abandoned and moved on. But there were some patients that responded really well. So you want to go back and say, it wasn’t necessarily a bad treatment. It was a bad selection of the patients that could benefit. If we can be more tailored and more personalized and more targeted, will there be a lot of drugs that had been like, this isn’t a great way to approach treating quote, breast cancer, which is far too broad of a term to use. Exactly the same analogy happens in the imaging sciences and radiology. We had a boon in developing new technology for breast imaging from old film screen to digital mammography to tomosynthesis to contrast-enhanced mammography to MRI to nuclear medicine scans to ultrasound. Everyone’s really excited, and we were trying to use these in screening, and some of them give orders that, well, we can’t screen with ultrasound, there are too many false positives, we can’t screen with MRI, it’s too expensive and we can’t afford it and the value proposition isn’t there. But what we needed to do was to say, what if you targeted the right population, that, one, is disadvantaged with mammography and, two, is really at high risk for having a cancer aggressively grow and fail to be detected by mammography? And if you targeted those high-risk patients, all of a sudden these technologies look a lot better, look a lot more powerful.
Laine Perfas: Cathy, one of the things you mentioned that I wanted to ask about was genetic sequencing. I believe it just was so time-consuming and expensive in the past that it wasn’t really a practical thing that could be done on a patient-by-patient basis. How has that changed and what doors has that opened with research?
Wu: It’s been huge. In short, I think the big change happened around 2008-09, more or less, where suddenly from the exorbitantly expensive experience of running the Human Genome Project, there was new technology available that suddenly made it possible to sequence on the order of hundreds to low thousands, which still sounds like a lot. That was back then. Now we’re coming down to the low hundreds per sample. We are already testing the waters, but I really do think it’s a reality that in the not-too-distant future that this should be a diagnostic test that can be offered that is a standard part of your cancer workup. As we as a community gain more experience, this experience can be aggregated and we can look for patterns and we can look for opportunities that can at one level afford personal opportunities, but also at a population level find perhaps therapies that can benefit another population that may share those kind of genetic characteristics.
Garraway: I’ll add a couple of points. One is that what Sam described, the laborious nature of sequencing, the unlock, as you point out, that happened coming close to two decades ago, was the ability to sequence at scale. So this technology called Massively Parallel Sequencing came on the scene, and now all of a sudden, where it used to be so laborious to even sequence one gene, and there are 20,000 genes in the genome and there are many hundreds that are critical in cancer, now all of a sudden you can sequence dozens or hundreds of genes at a time. Eventually, as Cathy mentioned, it’s become possible to sequence whole genomes routinely and many times over. So the expansion of technology has been remarkable. The other thing that it is enabling is possibly a new generation of what Cathy mentioned: immune therapy. It may be that in the fullness of time, the same sequencing technologies will figure out mutations that actually now cause a tumor to look more foreign. There can be new ways to target the immune system with that information, but that’s also very personalized information. Each tumor will have a different set of mutations or changes like that. So this is a direction that immunotherapy is taking. It’s early days but it looks very intriguing.
Laine Perfas: Is it accurate to say that there could be a future where we might be able to vaccinate against cancer or treat people with personalized vaccines for their specific case?
Wu: That’s the vision. I think that if we are going to be able to offer sequencing as a routine test, then the information content that is provided by that test not only allows you to understand maybe some of the origins of where that kind of cancer came from, what were the steps that made it into the cancer that it was, but it also provides you with different therapeutic opportunities. That gets into another interesting topic, which is, how can we, for example, make cancer vaccines as available as, say, the COVID vaccine was, right? So that was a huge rollout given to all citizens of our country. How were we able to roll that out quickly and safely? A cancer vaccine is far more complicated. Some of the principles, though, are very similar. But because of the scale of that difference in the personalization, it is more complex. On the other hand, the ingredients to make that type of vaccine are contained within the sequencing information that I think we would all envision would be a routine test in the not-too-distant future.
Lehman: I also think it’s exciting, and we’re becoming more and more sophisticated and not thinking of the multitude of cancers as cancer. So a vaccine against cancer is almost like thinking, will we have a vaccine against a virus? And so we have areas that have been incredibly exciting during my career where I certainly didn’t think when I was a medical school student and learning about cervical cancer that we would have a vaccine to prevent HPV infection and that would eradicate a very large percentage of cervical cancers in patients that are vaccinated and that also can reduce the occurrence of prostate cancer. So there’s a whole domain that you can actually stop the trigger for the cancer to be able to develop rather than wait and then see that there’s circulating cancer cells and now let’s come in and let’s try to have the body help fight away those cancer cells.
Laine Perfas: Connie, early detection is an area that you’re really passionate about. And actually in the work you’ve been doing, you’ve been using AI. I would love to hear more about that and how AI is being used to detect breast cancer sooner.
Lehman: Part of the different changing face of breast cancer has been mammography screening. Mammography is a very imperfect tool, but it did change the spectrum of patients presenting with breast cancer. We shifted historically from women coming forward when they noticed that there was a lump in their breast, or a doctor noticed that, and we could find cancers preclinical before that happened, and we really saw a shift in both the morbidity of the treatment, but also the survival.
That was a big win, but as I said it’s limited, and we have women presenting with advanced cancer despite routine screening. We have the costs and the false positives and the challenges of using mammography effectively. So I think that what I’m most excited about is changing the paradigm of how we screen and moving away from a very archaic age-based approach and moving into a risk-based approach.
Everyone has seen over the years the arguments about screening mammography. In Europe they tend to start at 50 and screen every two to three years. In the U.S. we constantly battle about whether you start at 40 or 50 and it’s every year or every two years. That argument is so limited. It’s almost unbelievable to me that we’re still having a basic argument about 40 or 50 or every year or every two years when there’s such a diversity of the risk profiles of women within their 40s, within their 30s, within their 50s, and we ignore that. Now one of the reasons why we’ve ignored it is our traditional risk models are inadequate. So the area I’m most excited about with artificial intelligence is using computer vision, not to look for cancer currently on the mammogram, but to predict whether that woman will develop cancer within the coming five years. So if you can look out into the future, is there something about this tissue that is putting this woman at increased risk? And our research to date shows that the AI applied to the basic regular mammogram can predict future breast cancer at a level that we just haven’t seen before.
It also eliminates the really unfortunate racial biases in our traditional risk models, which were built largely on European Caucasian women, and just don’t perform for us in Black, Hispanic, and Asian women. There’s a whole other domain, too, of having the computers learn how to read the mammograms, because one of the limitations of mammography is you need these highly specialized humans to read them, which really reduces the impact of screening mammography globally, because we just don’t have enough highly specialized radiologists to interpret the mammograms. So I think we’ll also see that shift.
Garraway: We could have a whole conversation, of course, on AI in medicine, and what Connie described in radiology is so exciting. It’s really going to be revolutionary. I’ll just say at a high level that AI is already changing every component of the research and development of new medicines, starting all the way from the very beginning, where you can use AI to conduct a lot of the compound screening or chemical screening in a computer. Where it used to be, you have to have lots of expensive chemical libraries and iterative screening of things. A lot of that can be done in silico, as we call it, because of AI, and even design of therapeutic antibodies from scratch, using AI-first principles. Then when you get into the clinic, the ability to synthesize all kinds of patient data to predict the kinds of patients that one should study so that you’re not fooled either in the positive or the negative way about whether a medicine is working. So it’s hard to come up with a component of the research and discovery of medicines that’s not being impacted by AI.
Laine Perfas: A lot of Connie’s work involves using AI for mammography and then Levi, you mentioned really every area of medicine is being revolutionized. Are there other emerging technologies that are really changing the landscape of cancer detection, treatment, and lowering morbidity rates?
Wu: I think there’s a lot of exciting technologies that are among us right now. It’s not for nothing that we’re in the age of human biomedicine that we actually can learn directly from human biospecimens as opposed to fruit flies, worms, and mice, which is really how we gained our insights in the past. Along the lines of some of the AI work, there’s a tremendous interest, not only unlocking the secrets one cell at a time, looking at the DNA, the RNA, the protein expression, but also looking to see how all of these cells in, for example, tumor tissue, are patterned, are organized in space. These patterns on the one hand are teaching us how the cells are interacting with each other and allowing us to relate that to patient characteristics. So for patients who are destined to respond or not respond to a particular therapy, what were the patterns that were seen? And what does that tell us about the biology that happened? A lot of that information can also be fed into AI-related algorithms so that we can become better at pattern recognition.
Lehman: Yeah, Cathy, I like how you’re presenting that because it is where, again with these multidisciplinary approaches, the more I interact with specialists in computer science and artificial intelligence, the more I realize how much we really need their expertise just infusing healthcare. Because what we deal with is, we’ve had this incredible renaissance where we have so much technology that can collect so much data and in the imaging sciences alone. I think about, when I started, the kinds of images I would look at with plain films and a chest X-ray and a mammogram and then the complexity of the way that we can image the human body and the data that results from that. But the technology to collect that information, to create those patterns, just far exceeds our ability as humans. From the military, from the auto industry, I mean, what they’re doing in computer vision is just unbelievable. And bringing that into healthcare to improve the lives of our patients is incredibly exciting.
Garraway: Sam, you asked the question about other kinds of technologies. Of course, as Connie’s mentioning, AI pervades all of them, but I will mention there are technologies that are also allowing new kinds of cancer treatments to emerge. There are now what we call treatment modalities, which are different than were possible in the past. I’ll just mention a couple of them.
One is what we call cellular therapy. So this is a technology platform. You basically collect certain kinds of immune cells from an individual and then you expand them in the laboratory. You engineer them so that they can destroy tumor cells very effectively and then you give them back to patients. And so, the first generation of cell therapy, you would collect those cells from a patient with, let’s say a blood cancer, and then you engineer them and you give them back to the same patients. That actually often works remarkably well. You can get very profound clinical benefit in patients who otherwise weren’t going to benefit at all. But as you might imagine it’s logistically challenging to do this for every patient, and in every center and every context. So not as many patients have access to cell therapy as one might like.
So there’s now a new kind of emerging generation of cell therapy. The technical term is allogeneic cell therapy. In that setting, what you do is you collect immune cells from completely unrelated donors, and you expand them and you engineer them, just like we talked about, but then you can store them so that in the future, you have, like, an off-the-shelf way of leveraging this cell therapy. You don’t have to do the whole start-to-finish process on every single patient, every single time. We think this is potentially a really exciting, future promise. Then the other platform I’ll just mention very briefly, it’s called bispecific antibodies. Traditionally one kind of therapy we call a therapeutic antibody, it’s a mimic of the immune system but it allows you to design an antibody that binds a particular disease target very tightly. But bispecific antibodies work by binding not just one target, but two targets. So if one target is on the tumor cell and the other target is on the immune cell, the bispecific antibody can bring the immune cell to the tumor cell and activate the immune cell and kill the tumor cell. So I just want to bring up that we talked a lot about AI as it’s revolutionizing everything, but there are other kinds of platforms that we use more and more in the pharmaceutical arena to try to develop new kinds of medicines that can bring new kinds of benefits.
Laine Perfas: Hearing about all these emerging therapies is so exciting and amazing and miraculous-seeming, especially as someone who is not a cancer researcher. But I also want to acknowledge that there’s still challenges there, you know, there’s costs, resources, still limitations on technology. A lot of it is just a lot of work.
Wu: We know. Oh, we know.
Laine Perfas: So what keeps you all hopeful with the current trajectory and where do you see us being or hope we’ll be 10 years from now, 20 years from now?
Wu: I think the hope comes from all the progress that we see. It is incremental. I think all of us know the challenges but experience the positive signals that kind of give us hope and tell us that we’re on the right track, and you’ve got to have the focus and the vision to get you through the finish line.
Garraway: Yeah, Sam, I think it’s a really prescient question because I know that both Connie and Cathy are part of outstanding institutions where unfortunately, the waiting rooms are still all too full with patients, some of whom are benefiting from these approaches, but others are not benefiting enough, or even at all from these approaches. So the unmet need is still quite considerable, and sometimes it feels like the pace of advance, it’s almost like, there’s a concept of how evolution happens, which is punctuated equilibrium: There’s a bunch of evolution, and then it plateaus, and there’s a bunch more, and then it plateaus. Cancer research and drug development can be like that. So you have this flurry of activity that led to targeted therapies, and then you have this flurry of activity that established immunotherapies, but all the while, you can be in these plateau phases also, where it’s like, “Oh, it’s not happening fast enough.” But the fact that these advances have happened and that we’ve been fortunate enough in our careers to either witness or, in some cases, participate in those advances, it doesn’t get old. You don’t forget those moments of impact, those opportunities to bring the advances. That’s what motivates you to bring more of those. I know for me, that’s what wakes me up in the morning.
Lehman: I actually think our strongest energy is around what we know needs to be done and the technology we have to make that happen. So we need to have the right people agree that this is the direction we have to go in. You can be in those domains where dogma, and this is the way we’ve always done it, and politics, can slow down the implementation and the progress. And so that’s really in the domain that I’m working the most in. The early detection-prevention side is to change the guidelines, to change the approach, to change how we think about how we screen to detect breast cancer early.
COVID was such a horrible period for so many, but one of the silver linings was we realized that we can be both safe and fast in certain domains of healthcare. I had been struggling with how many barriers there were to telehealth and to providing services to women in rural areas and in healthcare deserts. All of a sudden, all those barriers with COVID, it’s like, we can probably do these things that we used to always say weren’t safe, weren’t OK. But now that we need to do it, we can do it. I think it gave people new vision in what can be accomplished. That is something that’s going to be exciting as we continue to move forward in the next few years.
Laine Perfas: Thank you for this wonderful conversation.
Thanks for listening. To find a transcript of this episode and links to all of our other episodes, visit harvard.edu/thinking. This episode was hosted and produced by me, Samantha Laine Perfas. It was edited by Ryan Mulcahy, Simona Covel, and Paul Makishima with additional editing and production support from Sarah Lamodi. Original music and sound designed by Noel Flatt. Produced by Harvard University, copyright 2024.
We ingest equivalent of credit card per week — how worried should we be? In ‘Harvard Thinking,’ experts discuss how to minimize exposure, possible solutions.
Inspired by the way that squids use jets to propel themselves through the ocean and shoot ink clouds, researchers from MIT and Novo Nordisk have developed an ingestible capsule that releases a burst of drugs directly into the wall of the stomach or other organs of the digestive tract.This capsule could offer an alternative way to deliver drugs that normally have to be injected, such as insulin and other large proteins, including antibodies. This needle-free strategy could also be used to deliver
Inspired by the way that squids use jets to propel themselves through the ocean and shoot ink clouds, researchers from MIT and Novo Nordisk have developed an ingestible capsule that releases a burst of drugs directly into the wall of the stomach or other organs of the digestive tract.
This capsule could offer an alternative way to deliver drugs that normally have to be injected, such as insulin and other large proteins, including antibodies. This needle-free strategy could also be used to deliver RNA, either as a vaccine or a therapeutic molecule to treat diabetes, obesity, and other metabolic disorders.
“One of the longstanding challenges that we’ve been exploring is the development of systems that enable the oral delivery of macromolecules that usually require an injection to be administered. This work represents one of the next major advances in that progression,” says Giovanni Traverso, director of the Laboratory for Translational Engineering and an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, an associate member of the Broad Institute, and the senior author of the study.
Traverso and his students at MIT developed the new capsule along with researchers at Brigham and Women’s Hospital and Novo Nordisk. Graham Arrick SM ’20 and Novo Nordisk scientists Drago Sticker and Aghiad Ghazal are the lead authors of the paper, which appears today in Nature.
Inspired by cephalopods
Drugs that consist of large proteins or RNA typically can’t be taken orally because they are easily broken down in the digestive tract. For several years, Traverso’s lab has been working on ways to deliver such drugs orally by encapsulating them in small devices that protect the drugs from degradation and then inject them directly into the lining of the digestive tract.
Most of these capsules use a small needle or set of microneedles to deliver drugs once the device arrives in the digestive tract. In the new study, Traverso and his colleagues wanted to explore ways to deliver these molecules without any kind of needle, which could reduce the possibility of any damage to the tissue.
To achieve that, they took inspiration from cephalopods. Squids and octopuses can propel themselves by filling their mantle cavity with water, then rapidly expelling it through their siphon. By changing the force of water expulsion and pointing the siphon in different directions, the animals can control their speed and direction of travel. The siphon organ also allows cephalopods to shoot jets of ink, forming decoy clouds to distract predators.
The researchers came up with two ways to mimic this jetting action, using compressed carbon dioxide or tightly coiled springs to generate the force needed to propel liquid drugs out of the capsule. The gas or spring is kept in a compressed state by a carbohydrate trigger, which is designed to dissolve when exposed to humidity or an acidic environment such as the stomach. When the trigger dissolves, the gas or spring is allowed to expand, propelling a jet of drugs out of the capsule.
In a series of experiments using tissue from the digestive tract, the researchers calculated the pressures needed to expel the drugs with enough force that they would penetrate the submucosal tissue and accumulate there, creating a depot that would then release drugs into the tissue.
“Aside from the elimination of sharps, another potential advantage of high-velocity columnated jets is their robustness to localization issues. In contrast to a small needle, which needs to have intimate contact with the tissue, our experiments indicated that a jet may be able to deliver most of the dose from a distance or at a slight angle,” Arrick says.
The researchers also designed the capsules so that they can target different parts of the digestive tract. One version of the capsule, which has a flat bottom and a high dome, can sit on a surface, such as the lining of the stomach, and eject drug downward into the tissue. This capsule, which was inspired by previous research from Traverso’s lab on self-orienting capsules, is about the size of a blueberry and can carry 80 microliters of drug.
The second version has a tube-like shape that allows it to align itself within a long tubular organ such as the esophagus or small intestine. In that case, the drug is ejected out toward the side wall, rather than downward. This version can deliver 200 microliters of drug.
Made of metal and plastic, the capsules can pass through the digestive tract and are excreted after releasing their drug payload.
Needle-free drug delivery
In tests in animals, the researchers showed that they could use these capsules to deliver insulin, a GLP-1 receptor agonist similar to the diabetes drug Ozempic, and a type of RNA called short interfering RNA (siRNA). This type of RNA can be used to silence genes, making it potentially useful in treating many genetic disorders.
They also showed that the concentration of the drugs in the animals’ bloodstream reached levels on the same order of magnitude as those seen when the drugs were injected with a syringe, and they did not detect any tissue damage.
The researchers envision that the ingestible capsule could be used at home by patients who need to take insulin or other injected drugs frequently. In addition to making it easier to administer drugs, especially for patients who don’t like needles, this approach also eliminates the need to dispose of sharp needles. The researchers also created and tested a version of the device that could be attached to an endoscope, allowing doctors to use it in an endoscopy suite or operating room to deliver drugs to a patient.
“This technology is a significant leap forward in oral drug delivery of macromolecule drugs like insulin and GLP-1 agonists. While many approaches for oral drug delivery have been attempted in the past, they tend to be poorly efficient in achieving high bioavailability. Here, the researchers demonstrate the ability to deliver bioavailability in animal models with high efficiency. This is an exciting approach which could be impactful for many biologics which are currently administered through injections or intravascular infusions,” says Omid Veiseh, a professor of bioengineering at Rice University, who was not involved in the research.
The researchers now plan to further develop the capsules, in hopes of testing them in humans.
The research was funded by Novo Nordisk, the Natural Sciences and Engineering Research Council of Canada, the MIT Department of Mechanical Engineering, Brigham and Women’s Hospital, and the U.S. Advanced Research Projects Agency for Health.
Two alums are leading an effort to give Rwandan farmers the tools to grow and sell grains - with the ultimate goal of lifting communities out of poverty and improving food security across East Africa.
Two alums are leading an effort to give Rwandan farmers the tools to grow and sell grains - with the ultimate goal of lifting communities out of poverty and improving food security across East Africa.
Hospices are increasingly owned by private equity firms and publicly traded companies, but recently Weill Cornell Medicine researchers found that they performed substantially worse than hospices owned by not-for-profit agencies.
Hospices are increasingly owned by private equity firms and publicly traded companies, but recently Weill Cornell Medicine researchers found that they performed substantially worse than hospices owned by not-for-profit agencies.
The first three students to be supported by the Arm donation will begin their studies at the new research centre in the autumn of 2025. They will be followed by another three students each year for the following four years.
Arm – the company building the future of computing with its global headquarters in Cambridge – is the first organisation to donate to the new CASCADE Research Centre, part of the Department of Computer Science and Technology.
“We’re very grateful to them for their generou
The first three students to be supported by the Arm donation will begin their studies at the new research centre in the autumn of 2025. They will be followed by another three students each year for the following four years.
Arm – the company building the future of computing with its global headquarters in Cambridge – is the first organisation to donate to the new CASCADE Research Centre, part of the Department of Computer Science and Technology.
“We’re very grateful to them for their generous support,” said Professor Timothy Jones, Director of the Centre. “As well as funding 15 PhD students over the next five years, Arm’s involvement is helping us realise our vision of a centre where research into addressing key challenges in this field is informed and supported by our industrial partners.This is extremely valuable to us as we work to make the Centre a destination for collaboration between companies, generating pre-competitive open-source artefacts and driving development of novel computer architectures.”
Richard Grisenthwaite, executive vice president and chief architect, Arm said: “Our long-standing commitment to the University of Cambridge through this latest CASCADE funding highlights the vital collaboration between academia and industry as we embark on ground-breaking intent-based programming work to realize the future promise of AI through the next generation of processor designs."
“The Centre has the potential to enable further technology innovation within the semiconductor industry and is an important part of Arm’s mission to build the future of computing.”
Jones added: "Computer architecture is a critical area of computing. It underpins today’s technologies and drives the next generation of computing systems. Here in the Department of Computer Science and Technology, we’re proud of our research and innovation in this area. And the recently published National Semiconductor Strategy underlined how vital such work is, showing that the UK is currently a leader in computer architecture."
"But to maintain this leading position, we need to invest in developing the research leaders of tomorrow. That's why we have established the new CASCADE Research Centre to fund PhD students working in this area, through support from industry. It is currently taking applications for its first cohort of students."
The Centre will focus on research that addresses some of the grand challenges in computer architecture, design automation and semiconductors.
PhD students will work alongside researchers here who have expertise across the breadth of the area, encompassing the design and optimisation of general-purpose microprocessors, specialised accelerators, on-chip interconnect and memory systems, verification, compilation and networking, quantum architecture and resource estimation. This will allow them to explore the areas they are most passionate about, while addressing industry-relevant research.
Students receiving funding from Arm will be working in the general area of intent-based computing, researching systems that communicate what programs will do in the future so that the processor can make better decisions about how to execute them.
Arm was born in Cambridge in 1990 with the goal of changing the computing landscape. Its success since then in designing, architecting, and licensing high-performance, power-efficient CPUs — the 'brain' of all computers and many household and electronic devices — helped fuel the smartphone revolution and has made it a household name.
Arm has long had a research relationship with Cambridge University. Most notably, this has led to the development of new cybersecurity technology, focusing on innovative ways to design the architecture of a computer’s CPU to make software less vulnerable to security breaches.
Arm is donating £3.5 million to enable 15 PhD students over the next five years to study at CASCADE, the University's new Computer Architecture and Semiconductor Design Centre.
‘Manifest’ was looked up almost 130,000 times on the Cambridge Dictionary website, making it one of the most-viewed words of 2024.
The word jumped from use in the self-help community and on social media to being widely used across mainstream media and beyond, as celebrities such as singer Dua Lipa, Olympic sprinter Gabby Thomas and England striker Ollie Watkins spoke of manifesting their success in 2024.
Mentions of it gained traction during the pandemic and have grown in the years since, e
‘Manifest’ was looked up almost 130,000 times on the Cambridge Dictionary website, making it one of the most-viewed words of 2024.
The word jumped from use in the self-help community and on social media to being widely used across mainstream media and beyond, as celebrities such as singer Dua Lipa, Olympic sprinter Gabby Thomas and England striker Ollie Watkins spoke of manifesting their success in 2024.
Mentions of it gained traction during the pandemic and have grown in the years since, especially on TikTok and other social media, where millions of posts and videos used the hashtag #manifest.
They use ‘to manifest’ in the sense of: ‘to imagine achieving something you want, in the belief that doing so will make it more likely to happen’. Yet, manifesting is an unproven idea that grew out of a 100-year-old spiritual philosophy movement.
Wendalyn Nichols, Publishing Manager of the Cambridge Dictionary, said: “When we choose a Cambridge Dictionary Word of the Year, we have three considerations: What word was looked up the most, or spiked? Which one really captures what was happening in that year? And what is interesting about this word from a language point of view?
“‘Manifest’ won this year because it increased notably in lookups, its use widened greatly across all types of media due to events in 2024, and it shows how the meanings of a word can change over time.”
However experts warn that ‘manifesting’ has no scientific validity, despite its popularity. It can lead to risky behaviour or the promotion of false and dangerous beliefs, such as that diseases can be simply wished away.
“Manifesting is what psychologists call ‘magical thinking’ or the general illusion that specific mental rituals can change the world around us," said Cambridge University social psychologist Dr Sander van der Linden, author of The Psychology of Misinformation.
“Manifesting gained tremendous popularity during the pandemic on TikTok with billions of views, including the popular 3-6-9 method which calls for writing down your wishes three times in the morning, six times in the afternoon and nine times before bed. This procedure promotes obsessive and compulsive behaviour with no discernible benefits. But can we really blame people for trying it, when prominent celebrities have been openly ‘manifesting’ their success?
‘Manifesting’ wealth, love, and power can lead to unrealistic expectations and disappointment. Think of the dangerous idea that you can cure serious diseases simply by wishing them away," said Van der Linden.
“There is good research on the value of positive thinking, self-affirmation, and goal-setting. Believing in yourself, bringing a positive attitude, setting realistic goals, and putting in the effort pays off because people are enacting change in the real world. However, it is crucial to understand the difference between the power of positive thinking and moving reality with your mind – the former is healthy, whereas the latter is pseudoscience.”
‘Manyfest’, manifest destiny, and manifestos
The 600-year history of the word “manifest” shows how the meanings of a word can evolve.
The oldest sense – which Geoffrey Chaucer spelled as “manyfest” in the 14th century – is the adjective meaning ‘easily noticed or obvious’.
In the mid-1800s, this adjective sense was used in American politics in the context of “manifest destiny”, the belief that American settlers were clearly destined to expand across North America.
Chaucer also used the oldest sense of the verb “manifest”, ‘to show something clearly, through signs or actions’. Shakespeare used manifest as an adjective in The Merchant of Venice: “For it appears, by manifest proceeding, that...thou hast contrived against the very life of the defendant”.
The verb is still used frequently in this way: for example, people can manifest their dissatisfaction, or symptoms of an illness can manifest themselves. Lack of confidence in a company can manifest itself through a fall in share price.
The meaning of making something clear is reflected in the related noun “manifesto”: a ‘written statement of the beliefs, aims, and policies of an organization, especially a political party’ – a word that also resonated in 2024 as scores of nations, including the United Kingdom and India, held elections where parties shared manifestos.
Other words of 2024
The Cambridge Dictionary is the world’s most popular dictionary for learners of the English language. Increases and spikes in lookups reflect global events and trends. Beyond “manifest”, other popular terms in 2024 included:
brat: a child, especially one who behaves badly
“Brat” went viral in the summer of 2024 thanks to pop artist Charli XCX’s album of the same name about nonconformist women who reject a narrow and highly groomed female identity as portrayed on social media. (We weren’t the only dictionary publisher to notice this.)
demure: quiet and well behaved
Influencer Jools Lebron’s satirical use of “demure” in a TikTok post mocking stereotypical femininity drove lookups in the Cambridge Dictionary. After brat summer, we had a demure fall.
Goldilocks: used to describe a situation in which something is or has to be exactly right
Financial reporters characterized India’s strong growth and moderate inflation as a Goldilocks economy in early 2024.
ecotarian: a person who only eats food produced or prepared in a way that does not harm the environment
This term rose in overall lookups in 2024, reflecting growing interest in environmentally conscious living.
New words, future entries?
All year round, Cambridge Dictionary editors track the English language as it changes. Newly emerging words that are being considered for entry are shared every Monday on the Cambridge Dictionary blog, About Words.
Words Cambridge began tracking in 2024 include:
quishing: the scam of phishing via QR code.
resenteeism: to continue doing your job but resent it. This blend of “resent” and “absenteeism” is appearing in business journalism.
gymfluencer: a social media influencer whose content is focused on fitness or bodybuilding.
cocktail party problem (also cocktail party effect): the difficulty of focusing on one voice when there are multiple speakers in the room. This term from audiology is now being used with reference to AI.
vampire: a vampire device or vampire appliance is one which uses energy even when not in use. This is a new, adjective sense of an existing word.
Vice President of Research Christian Wolfrum is leaving ETH as of 1 July 2025 to take up a new academic challenge: he is to become Deputy President and Provost responsible for all academic matters at Nanyang Technological University, Singapore (NTU Singapore).
Vice President of Research Christian Wolfrum is leaving ETH as of 1 July 2025 to take up a new academic challenge: he is to become Deputy President and Provost responsible for all academic matters at Nanyang Technological University, Singapore (NTU Singapore).
People from Belfast proved most able to detect someone faking their accent, while people from London, Essex and Bristol were least accurate.
The study, published today in Evolutionary Human Sciences found that the ability of participants from Scotland, the north-east of England, Ireland and Northern Ireland to tell whether short recordings of their native accent were real or fake ranged from approximately 65% – 85%. By contrast, for Essex, London and Bristol, success ranged from just over 50%,
People from Belfast proved most able to detect someone faking their accent, while people from London, Essex and Bristol were least accurate.
The study, published today in Evolutionary Human Sciences found that the ability of participants from Scotland, the north-east of England, Ireland and Northern Ireland to tell whether short recordings of their native accent were real or fake ranged from approximately 65% – 85%. By contrast, for Essex, London and Bristol, success ranged from just over 50%, barely better than chance, to 65% –75%.
In the biggest study of its kind, drawing on 12,000 responses, the researchers found that participants across all groups were better than chance at detecting fake accents, succeeding just over 60% of the time. Unsurprisingly, participants who spoke naturally in the test accent tended to detect more accurately than non-native listener groups – some of which performed worse than chance – but success varied between regions.
“We found a pretty pronounced difference in accent cheater detection between these areas,” said corresponding author Dr Jonathan R Goodman, from Cambridge’s Leverhulme Centre for Human Evolutionary Studies, and Cambridge Public Health.
“We think that the ability to detect fake accents is linked to an area’s cultural homogeneity, the degree to which its people hold similar cultural values.”
The researchers argue that the accents of speakers from Belfast, Glasgow, Dublin, and north-east England have culturally evolved over the past several centuries, during which there have been multiple cases of between-group cultural tension, particularly involving the cultural group making up southeast England, above all London.
This, they suggest, probably caused individuals from areas in Ireland and the northern regions of the United Kingdom to place emphasis on their accents as signals of social identity.
The study argues that greater social cohesion in Belfast, Dublin, Glasgow and the north-east may have resulted in a more prominent fear of cultural dilution by outsiders, which would have encouraged the development of improved accent recognition and mimicry detection.
People from London and Essex proved least able to spot fake accents because, the study suggests, these areas have less strong ‘cultural group boundaries’ and people are more used to hearing different kinds of accents, which could make them less attuned to accent fakery.
The study points out that many speakers of the Essex accent only moved to the area over the past 25 years from London, whereas the accents of people living in Belfast, Glasgow and Dublin have ‘evolved over centuries of cultural tension and violence.’
Some might have expected Bristolians to authenticate recordings of their accent more accurately, but Goodman points out that “cultural heterogeneity has been increasing significantly in the city”. The researchers would also like to obtain more data for Bristol.
An evolved ability
Previous research has shown that when people want to demarcate themselves for cultural reasons, their accents become stronger. In human evolution, the ability to recognise and thwart ‘free riders’ is also thought to have been pivotal in the development of large-scale societies.
Dr Goodman said: “Cultural, political, or even violent conflict are likely to encourage people to strengthen their accents as they try to maintain social cohesion through cultural homogeneity. Even relatively mild tension, for example the intrusion of tourists in the summer, could have this effect.
“I'm interested in the role played by trust in society and how trust forms. One of the first judgments a person will make about another person, and when deciding whether to trust them, is how they speak. How humans learn to trust another person who may be an interloper has been incredibly important over our evolutionary history and it remains critical today.”
Overall, the study found that participants were better than chance at detecting fake accents but is it surprising that so many people failed 40–50% of the time?
The authors point out that participants were only given 2-3 second clips so the fact that some authenticated with 70–85% accuracy is very impressive. If participants had heard a longer clip or been able to interact with someone face-to-face, the researchers would expect success rates to rise but continue to vary by region.
How the tests worked
The researchers constructed a series of sentences designed to elicit phonetic variables distinguishing between 7 accents of interest: north-east England, Belfast, Dublin, Bristol, Glasgow, Essex, and Received Pronunciation (RP), commonly understood as standard British English. The researchers chose these accents to ensure a high number of contrasting phonemes between sentences.
Test sentences included: ‘Hold up those two cooked tea bags’; ‘She kicked the goose hard with her foot’; ‘He thought a bath would make him happy’; ‘Jenny told him to face up to his weight’; and ‘Kit strutted across the room’.
The team initially recruited around 50 participants who spoke in these accents and asked them to record themselves reading the sentences in their natural accent. The same participants were then asked to mimic sentences in the other six accents in which they did not naturally speak, chosen randomly. Females mimicked females, males mimicked males. The researchers selected recordings which they judged came closest to the accents in question based on the reproduction of key phonetic variables.
Finally, the same participants were asked to listen to recordings made by other participants of their own accents, of both genders. Therefore, Belfast accent speakers heard and judged recordings made by native Belfast speakers as well as recordings of fake Belfast accents made by non-native speakers.
Participants were then asked to determine whether the recordings were authentic. All participants were asked to determine whether the speaker was an accent-mimic for each of 12 recordings (six mimics and six genuine speakers, presented in random order). The researchers obtained 618 responses.
In a second phase, the researchers recruited over 900 participants from the United Kingdom and Ireland, regardless of which accent they spoke naturally. This created a control group for comparison and increased the native speaker sample sizes. In the second phase, the researchers collected 11,672 responses.
“The UK is a really interesting place to study,” Dr Goodman said. “The linguistic diversity and cultural history is so rich and you have so many cultural groups that have been roughly in the same location for a really long time. Very specific differences in language, dialect and accents have emerged over time, and that's a fascinating side of language evolution.”
People from Glasgow, Belfast, Dublin and the north-east of England are better at detecting someone imitating their accent than people from London and Essex, new research has found.
Cultural, political, or even violent conflict are likely to encourage people to strengthen their accents as they try to maintain social cohesion
In developing a familial and inclusive residential community, inclusiveness has been a key theme at Pioneer House (PH) since its inception in 2017 as a new housing model at NUS centred on proactive pastoral care and mentoring. As such, PH adopts various academic approaches to nurture togetherness and warmth amongst its residents – students who hail from different academic years, as well as cultural and ethnic backgrounds.Since August 2024 (Semester 1, Academic Year 2024/2025), a pioneering group
In developing a familial and inclusive residential community, inclusiveness has been a key theme at Pioneer House (PH) since its inception in 2017 as a new housing model at NUS centred on proactive pastoral care and mentoring. As such, PH adopts various academic approaches to nurture togetherness and warmth amongst its residents – students who hail from different academic years, as well as cultural and ethnic backgrounds.
Since August 2024 (Semester 1, Academic Year 2024/2025), a pioneering group of ten students has taken this theme of fostering inclusiveness a step further by ‘formalising’ their initiatives to engage the international student community at PH. They embarked on a ‘Design-Your-Own-Course’ (DYOC) – an academic scheme at NUS which allows students the opportunities to pursue self-directed learning beyond their disciplines, through avenues such as engaging relevant subject matter experts at the University. While PH has consistently organised programmes and initiatives to engage its international student community, this step marks the first time it has been carried out through a DYOC framework.
Melding academia and application
The idea for a DYOC was mooted by team leader Nikol Goh (Year 2, Psychology), who wanted to do something meaningful in community building. Fueled by the determination to see the idea come to fruition, the initial team of four she pulled together managed to complete a quick recruitment via spreading the word and social media channels, eventually growing to a group of 10. They creatively named themselves PHamigo, tagging PH’s acronym to the word amigo which means ‘friend’ in Spanish.
Together with their mentors, PH Resident Fellows Dr Andi Sudjana Putra, Senior Lecturer at the College of Design and Engineering, and Associate Professor Wilson Tam, Deputy Head (Research) at NUS Nursing, the students formulated the intended learning outcomes through application of Bloom’s Taxonomy, an educational framework which categorises learning outcomes into seven ascending levels of thinking. Of the four intended learning outcomes from DYOC, evaluation of the community development journey required the PHamigo team to apply the sixth of seven levels of higher order learning, stretching the students' thinking.
“I was so proud that the students took charge of their own learning through DYOC. For example, the students themselves proposed the use of Asset Based Community Development (ABCD) in framing their project,” said Dr Andi, referring to the strategy for community development that focuses on identifying and using a community's existing assets to improve the community.
“Many times, the student discussions during the sessions were so rigorous that I did not have to intervene much! It was very heartwarming to witness students being fully immersed in their learning,” Dr Andi enthused.
In terms of activity planning, which was one of the deliverables of DYOC, the students planned for events, tours and hands-on experiences for local and international students alike to explore cultures, cuisines, and landmarks of Singapore. During the student-organised tours affectionately called OpenJio, drawing from the colloquial term for an all-inclusive invitation to an activity, the PHamigo team led students on fortnightly visits to events such as the Singapore Light Festival and the Formula 1 Singapore night race, as well as to prominent local landmarks such as Parliament House, the Istana, and the Merlion.
International students also had the chance to experience Singapore’s local childhood games, such as the time-honoured pastime of flipping country erasers. And not to be omitted in a country with an identity rooted in culinary appreciation, students also introduced cuisines from their respective cultures to each other, which they would not have had the chance to try if not for the PHamigo programme.
These activities spanning across the semester were especially valuable in helping international students, most of whom may not have been in Singapore during the orientation season before the start of the academic year, stay plugged into the community.
Elevating community development
To cap off a fulfilling semester of hard work, the PHamigo team also organised a large Batik painting activity on 17 and 19 October 2024. In addition to 40 students, the event also saw the participation of seven members of PH’s housekeeping staff. It was a way for the students to express their gratitude to the staff, who have worked quietly behind the scenes to maintain the cleanliness at PH. It was a serendipitous culmination of many different initiatives which melded together seamlessly – from PHamigo’s framework to elevate community development in their penultimate activity for the semester, to a group of international students who were introduced to batik, to other students who wanted to bring the housekeeping team at PH on an outing.
“We wanted to emphasise the idea that ‘community’ in PH is not only students, but also staff, including the housekeeping team, whom we are grateful for. We wanted to appreciate them as part of PH for all the work that they have done,” Nikol reflected.
“The students originally wanted to bring the housekeeping team on an outing. However, after speaking with them, we realised the challenges in doing so due to their working hours and commitments. Some also had mobility issues, making moving around difficult for them. It was then we learnt that what we think they need, may not be what they actually need,” Nikol added, sharing that this led the team to decide to hold the activity in PH instead.
In additional to its cultural relevance and roots in Southeast Asia, the application of batik creation also tapped on the concept of ABCD that framed the DYOC, such as a group of students keen to introduce it to the community, and the knowledge drawn from previous cluster activities that many fellow students at PH have artistic talents in drawing. The batik workshop was received positively by local and international students, some who found it therapeutic and stress-relieving.
Reflecting on the experience with PHamigo, Nguyen Ky Minh, a first-year international student from Vietnam. “I found PHamigo a very useful and fascinating exercise in cultural exploration. I especially enjoyed the OpenJio walks around Singapore, which helped us learn more about facets of the Singaporean cultural mosaic that we probably would have never encountered on our own. I certainly second the continuation of this initiative, which will undoubtedly complement PH residents’ time in Singapore.”
“I think many students possess theoretical knowledge of community development. However, from its application in PH through DYOC, it was fulfilling to witness how the activities based on the concept were so enthusiastically accepted by the community, and it left me impressed by how many lives the activities have touched,” said Nikol.
Registrations for the next PHamigo DYOC, which will take place next semester, have opened, and the community eagerly looks forward to more activities in their experience of living, learning, and growing together.
A US$1.5 million gift from the Colossal Foundation, a non-profit organisation established by Colossal Biosciences, will help researchers in the Faculty of Science develop new approaches to the conservation of bird species in Australia and around the world.
A US$1.5 million gift from the Colossal Foundation, a non-profit organisation established by Colossal Biosciences, will help researchers in the Faculty of Science develop new approaches to the conservation of bird species in Australia and around the world.
The Doherty Council has today confirmed Professor Sharon Lewin AO has been reappointedDirector of the Peter Doherty Institute for Infection and Immunity (Doherty Institute) foranother term.
The Doherty Council has today confirmed Professor Sharon Lewin AO has been reappointedDirector of the Peter Doherty Institute for Infection and Immunity (Doherty Institute) foranother term.
On Nov. 15, eight distinguished alumni will receive Awards of Merit, the Alumni Social Impact Award, and the Creative Spirit Award, and André Dombrowski will receive the Faculty Award of Merit.
On Nov. 15, eight distinguished alumni will receive Awards of Merit, the Alumni Social Impact Award, and the Creative Spirit Award, and André Dombrowski will receive the Faculty Award of Merit.
In April 2019, a group of astronomers from around the globe stunned the world when they revealed the first image of a black hole — the monstrous accumulation of collapsed stars and gas that lets nothing escape, not even light. The image, which was of the black hole that sits at the core of a galaxy called Messier 87 (M87), revealed glowing gas around the center of the black hole. In March 2021, the same team produced yet another stunning image that showed the polarization of light around the bla
In April 2019, a group of astronomers from around the globe stunned the world when they revealed the first image of a black hole — the monstrous accumulation of collapsed stars and gas that lets nothing escape, not even light. The image, which was of the black hole that sits at the core of a galaxy called Messier 87 (M87), revealed glowing gas around the center of the black hole. In March 2021, the same team produced yet another stunning image that showed the polarization of light around the black hole, revealing its magnetic field.
The "camera" that took both images is the Event Horizon Telescope (EHT), which is not one singular instrument but rather a collection of radio telescopes situated around the globe that work together to create high-resolution images by combining data from each individual telescope. Now, scientists are looking to extend the EHT into space to get an even sharper look at M87's black hole. But producing the sharpest images in the history of astronomy presents a challenge: transmitting the telescope's massive dataset back to Earth for processing. A small but powerful laser communications (lasercom) payload developed at MIT Lincoln Laboratory operates at the high data rates needed to image the aspects of interest of the black hole.
Extending baseline distances into space
The EHT created the two existing images of M87's black hole via interferometry — specifically, very long-baseline interferometry. Interferometry works by collecting light in the form of radio waves simultaneously with multiple telescopes in separate places on the globe and then comparing the phase difference of the radio waves at the various locations in order to pinpoint the direction of the source. By taking measurements with different combinations of the telescopes around the planet, the EHT collaboration — which included staff members at the Harvard-Smithsonian Center for Astrophysics (CfA) and MIT Haystack Observatory — essentially created an Earth-sized telescope in order to image the incredibly faint black hole 55 million light-years away from Earth.
With interferometry, the bigger the telescope, the better the resolution of the image. Therefore, in order to focus in on even finer characteristics of these black holes, a bigger instrument is needed. Details that astronomers hope to resolve include the turbulence of the gas falling into a black hole (which drives the accumulation of matter onto the black hole through a process called accretion) and a black hole's shadow (which could be used to help pin down where the jet coming from M87 is drawing its energy from). The ultimate goal is to observe a photon ring (the place where light orbits closest before escaping) around the black hole. Capturing an image of the photon ring would enable scientists to put Albert Einstein's general theory of relativity to the test.
With Earth-based telescopes, the farthest that two telescopes could be from one another is on opposite sides of the Earth, or about 13,000 kilometers apart. In addition to this maximum baseline distance, Earth-based instruments are limited by the atmosphere, which makes observing shorter wavelengths difficult. Earth's atmospheric limitations can be overcome by extending the EHT's baselines and putting at least one of the telescopes in space, which is exactly what the proposed CfA-led Black Hole Explorer (BHEX) mission aims to do.
One of the most significant challenges that comes with this space-based concept is transfer of information. The dataset to produce the first EHT image was so massive (totaling 4 petabytes) that the data had to be put on disks and shipped to a facility for processing. Gathering information from a telescope in orbit would be even more difficult; the team would need a system that can downlink data from the space telescope to Earth at approximately 100 gigabits per second (Gbps) in order to image the desired aspects of the black hole.
Enter TBIRD
Here is where Lincoln Laboratory comes in. In May 2023, the laboratory's TeraByte InfraRed Delivery (TBIRD) lasercom payload achieved the fastest data transfer from space, transmitting at a rate of 200 Gbps — which is 1,000 times faster than typical satellite communication systems — from low Earth orbit (LEO).
"We developed a novel technology for high-volume data transport from space to ground," says Jade Wang, assistant leader of the laboratory's Optical and Quantum Communications Group. "In the process of developing that technology, we looked for collaborations and other potential follow-on missions that could leverage this unprecedented data capability. The BHEX is one such mission. These high data rates will enable scientists to image the photon ring structure of a black hole for the first time."
A lasercom team led by Wang, in partnership with the CfA, is developing the long-distance, high-rate downlink needed for the BHEX mission in middle Earth orbit (MEO).
"Laser communications is completely upending our expectations for what astrophysical discoveries are possible from space," says CfA astrophysicist Michael Johnson, principal investigator for the BHEX mission. "In the next decade, this incredible new technology will bring us to the edge of a black hole, creating a window into the region where our current understanding of physics breaks down."
Though TBIRD is incredibly powerful, the technology needs some modifications to support the higher orbit that BHEX requires for its science mission. The small TBIRD payload (CubeSat) will be upgraded to a larger aperture size and higher transmit power. In addition, the TBIRD automatic request protocol — the error-control mechanism for ensuring data make it to Earth without loss due to atmospheric effects — will be adjusted to account for the longer round-trip times that come with a mission in MEO. Finally, the TBIRD LEO "buffer and burst" architecture for data delivery will shift to a streaming approach.
"With TBIRD and other lasercom missions, we have demonstrated that the lasercom technology for such an impactful science mission is available today," Wang says. "Having the opportunity to contribute to an area of really interesting scientific discovery is an exciting prospect."
The BHEX mission concept has been in development since 2019. Technical and concept studies for BHEX have been supported by the Smithsonian Astrophysical Observatory, the Internal Research and Development program at NASA Goddard Space Flight Center, the University of Arizona, and the ULVAC-Hayashi Seed Fund from the MIT-Japan Program at MIT International Science and Technology Initiatives. BHEX studies of lasercom have been supported by Fred Ehrsam and the Gordon and Betty Moore Foundation.
Anoushka Bose ’20 spent the summer of 2018 as an MIT Washington program intern, applying her nuclear physics education to arms control research with a D.C. nuclear policy think tank.“It’s crazy how much three months can transform people,” says Bose, now an attorney at the Department of Justice.“Suddenly, I was learning far more than I had expected about treaties, nuclear arms control, and foreign relations,” adds Bose. “But once I was hooked, I couldn’t be stopped as that summer sparked a much b
Anoushka Bose ’20 spent the summer of 2018 as an MIT Washington program intern, applying her nuclear physics education to arms control research with a D.C. nuclear policy think tank.
“It’s crazy how much three months can transform people,” says Bose, now an attorney at the Department of Justice.
“Suddenly, I was learning far more than I had expected about treaties, nuclear arms control, and foreign relations,” adds Bose. “But once I was hooked, I couldn’t be stopped as that summer sparked a much broader interest in diplomacy and set me on a different path.”
Bose is one of hundreds of MIT undergraduates whose academic and career trajectories were influenced by their time in the nation’s capital as part of the internship program.
Leah Nichols ’00 is a former D.C. intern, and now executive director of George Mason University’s Institute for a Sustainable Earth. In 1998, Nichols worked in the office of U.S. Senator Max Baucus, D-Mont., developing options for protecting open space on private land.
“I really started to see how science and policy needed to interact in order to solve environmental challenges,” she says. “I’ve actually been working at that interface between science and policy ever since.”
Marking its 30th anniversary this year, the MIT Washington Summer Internship Program has shaped the lives of alumni, and expanded MIT’s capital in the capital city.
Bose believes the MIT Washington summer internship is more vital than ever.
“This program helps steer more technical expertise, analytical thinking, and classic MIT innovation into policy spaces to make them better-informed and better equipped to solve challenges,” she says. With so much at stake, she suggests, it is increasingly important “to invest in bringing the MIT mindset of extreme competence as well as resilience to D.C.”
MIT missionaries
Over the past three decades, students across MIT — whether studying aeronautics or nuclear engineering, management or mathematics, chemistry or computer science — have competed for and won an MIT Washington summer internship. Many describe it as a springboard into high-impact positions in politics, public policy, and the private sector.
The program was launched in 1994 by Charles Stewart III, the Kenan Sahin (1963) Distinguished Professor of Political Science, who still serves as the director.
“The idea 30 years ago was to make this a bit of a missionary program, where we demonstrate to Washington the utility of having MIT students around for things they’re doing,” says Stewart. “MIT’s reputation benefits because our students are unpretentious, down-to-earth, interested in how the world actually works, and dedicated to fixing things that are broken.”
The outlines of the program have remained much the same: A cohort of 15 to 20 students is selected from a pool of fall applicants. With the help of MIT’s Washington office, the students are matched with potential supervisors in search of technical and scientific talent. They travel in the spring to meet potential supervisors and receive a stipend and housing for the summer. In the fall, students take a course that Stewart describes as an “Oxbridge-type tutorial, where they contextualize their experiences and reflect on the political context of the place where they worked.”
Stewart remains as enthusiastic about the internship program as when he started and has notions for building on its foundations. His wish list includes running the program at other times of the year, and for longer durations. “Six months would really change and deepen the experience,” he says. He envisions a real-time tutorial while the students are in Washington. And he would like to draw more students from the data science world. “Part of the goal of this program is to hook non-obvious people into knowledge of the public policy realm,” he says.
Prized in Washington
MIT Vice Provost Philip Khoury, who helped get the program off the ground, praised Stewart’s vision for developing the initial idea.
“Charles understood why science- and technology-oriented students would be great beneficiaries of an experience in Washington and had something to contribute that other internship program students would not be able to do because of their prowess, their prodigious abilities in the technology-engineering-science world,” says Khoury.
Khoury adds that the program has benefited both the host organizations and the students.
“Members of Congress and senior staff who were developing policies prized MIT students, because they were powerful thinkers and workaholics, and students in the program learned that they really mattered to adults in Washington, wherever they went.”
David Goldston, director of the MIT Washington Office, says government is “kind of desperate for people who understand science and technology.” One example: The National Institute of Standards and Technology has launched an artificial intelligence safety division that is “almost begging for students to help conduct research and carry out the ever-expanding mission of worrying about AI issues,” he says.
Holly Krambeck ’06 MST/MCP, program manager of the World Bank Data Lab, can attest to this impact. She hired her first MIT summer intern, Chae Won Lee, in 2013, to analyze road crash data from the Philippines. “Her findings were so striking, we invited her to join the team on a mission to present her work to the government,” says Krambeck.
Subsequent interns have helped the World Bank demonstrate effective, low-cost, transit-fare collection systems; identify houses eligible for hurricane protection retrofits under World Bank loans; and analyze heatwave patterns in the Philippines to inform a lending program for mitigation measures.
“Every year, I’ve been so impressed by the maturity, energy, willingness to learn new skills, and curiosity of the MIT students,” says Krambeck. “At the end of each summer, we ask students to present their projects to World Bank staff, who are invariably amazed to learn that these are undergraduates and not PhD candidates!”
Career springboard
“It absolutely changed my career pathway,” says Samuel Rodarte Jr. ’13, a 2011 program alumnus who interned at the MIT Washington Office, where he tracked congressional hearings related to research at the Institute. Today, he serves as a legislative assistant to Senate Majority Leader Charles E. Schumer. An aerospace engineering and Latin American studies double major, Rodarte says the opportunity to experience policymaking from the inside came “at just the right time, when I was trying to figure out what I really wanted to do post-MIT.”
Miranda Priebe ’03 is director of the Center for Analysis of U.S. Grand Strategy for the Rand Corp. She briefs groups within the Pentagon, the U.S. Department of State, and the National Security Council, among others. “My job is to ask the big question: Does the United States have the right approach in the world in terms of advancing our interests with our capabilities and resources?”
Priebe was a physics major with an evolving interest in political science when she arrived in Washington in 2001 to work in the office of Senator Carl Levin, D-Mich., the chair of the Senate Armed Services Committee. “I was working really hard at MIT, but just hadn’t found my passion until I did this internship,” she says. “Once I came to D.C. I saw all the places I could fit in using my analytical skills — there were a million things I wanted to do — and the internship convinced me that this was the right kind of work for me.”
During her internship in 2022, Anushree Chaudhuri ’24, urban studies and planning and economics major, worked in the U.S. Department of Energy’s Building Technologies Office, where she hoped to experience day-to-day life in a federal agency — with an eye toward a career in high-level policymaking. She developed a web app to help local governments determine which census tracts qualified for environmental justice funds.
“I was pleasantly surprised to see that even as a lower-level civil servant you can make change if you know how to work within the system.” Chaudhuri is now a Marshall Scholar, pursuing a PhD at the University of Oxford on the socioeconomic impacts of energy infrastructure. “I’m pretty sure I want to work in the policy space long term,” she says.
A crowd gathered at the MIT Media Lab in September for a concert by musician Jordan Rudess and two collaborators. One of them, violinist and vocalist Camilla Bäckman, has performed with Rudess before. The other — an artificial intelligence model informally dubbed the jam_bot, which Rudess developed with an MIT team over the preceding several months — was making its public debut as a work in progress.Throughout the show, Rudess and Bäckman exchanged the signals and smiles of experienced musicians
A crowd gathered at the MIT Media Lab in September for a concert by musician Jordan Rudess and two collaborators. One of them, violinist and vocalist Camilla Bäckman, has performed with Rudess before. The other — an artificial intelligence model informally dubbed the jam_bot, which Rudess developed with an MIT team over the preceding several months — was making its public debut as a work in progress.
Throughout the show, Rudess and Bäckman exchanged the signals and smiles of experienced musicians finding a groove together. Rudess’ interactions with the jam_bot suggested a different and unfamiliar kind of exchange. During one duet inspired by Bach, Rudess alternated between playing a few measures and allowing the AI to continue the music in a similar baroque style. Each time the model took its turn, a range of expressions moved across Rudess’ face: bemusement, concentration, curiosity. At the end of the piece, Rudess admitted to the audience, “That is a combination of a whole lot of fun and really, really challenging.”
Rudess is an acclaimed keyboardist — the best of all time, according to one Music Radar magazine poll — known for his work with the platinum-selling, Grammy-winning progressive metal band Dream Theater, which embarks this fall on a 40th anniversary tour. He is also a solo artist whose latest album, “Permission to Fly,” was released on Sept. 6; an educator who shares his skills through detailed online tutorials; and the founder of software company Wizdom Music. His work combines a rigorous classical foundation (he began his piano studies at The Juilliard School at age 9) with a genius for improvisation and an appetite for experimentation.
Last spring, Rudess became a visiting artist with the MIT Center for Art, Science and Technology (CAST), collaborating with the MIT Media Lab’s Responsive Environments research group on the creation of new AI-powered music technology. Rudess’ main collaborators in the enterprise are Media Lab graduate students Lancelot Blanchard, who researches musical applications of generative AI (informed by his own studies in classical piano), and Perry Naseck, an artist and engineer specializing in interactive, kinetic, light- and time-based media. Overseeing the project is Professor Joseph Paradiso, head of the Responsive Environments group and a longtime Rudess fan. Paradiso arrived at the Media Lab in 1994 with a CV in physics and engineering and a sideline designing and building synthesizers to explore his avant-garde musical tastes. His group has a tradition of investigating musical frontiers through novel user interfaces, sensor networks, and unconventional datasets.
The researchers set out to develop a machine learning model channeling Rudess’ distinctive musical style and technique. In a paper published online by MIT Press in September, co-authored with MIT music technology professor Eran Egozy, they articulate their vision for what they call “symbiotic virtuosity:” for human and computer to duet in real-time, learning from each duet they perform together, and making performance-worthy new music in front of a live audience.
Rudess contributed the data on which Blanchard trained the AI model. Rudess also provided continuous testing and feedback, while Naseck experimented with ways of visualizing the technology for the audience.
“Audiences are used to seeing lighting, graphics, and scenic elements at many concerts, so we needed a platform to allow the AI to build its own relationship with the audience,” Naseck says. In early demos, this took the form of a sculptural installation with illumination that shifted each time the AI changed chords. During the concert on Sept. 21, a grid of petal-shaped panels mounted behind Rudess came to life through choreography based on the activity and future generation of the AI model.
“If you see jazz musicians make eye contact and nod at each other, that gives anticipation to the audience of what’s going to happen,” says Naseck. “The AI is effectively generating sheet music and then playing it. How do we show what’s coming next and communicate that?”
Naseck designed and programmed the structure from scratch at the Media Lab with assistance from Brian Mayton (mechanical design) and Carlo Mandolini (fabrication), drawing some of its movements from an experimental machine learning model developed by visiting student Madhav Lavakare that maps music to points moving in space. With the ability to spin and tilt its petals at speeds ranging from subtle to dramatic, the kinetic sculpture distinguished the AI’s contributions during the concert from those of the human performers, while conveying the emotion and energy of its output: swaying gently when Rudess took the lead, for example, or furling and unfurling like a blossom as the AI model generated stately chords for an improvised adagio. The latter was one of Naseck’s favorite moments of the show.
“At the end, Jordan and Camilla left the stage and allowed the AI to fully explore its own direction,” he recalls. “The sculpture made this moment very powerful — it allowed the stage to remain animated and intensified the grandiose nature of the chords the AI played. The audience was clearly captivated by this part, sitting at the edges of their seats.”
“The goal is to create a musical visual experience,” says Rudess, “to show what’s possible and to up the game.”
Musical futures
As the starting point for his model, Blanchard used a music transformer, an open-source neural network architecture developed by MIT Assistant Professor Anna Huang SM ’08, who joined the MIT faculty in September.
“Music transformers work in a similar way as large language models,” Blanchard explains. “The same way that ChatGPT would generate the most probable next word, the model we have would predict the most probable next notes.”
Blanchard fine-tuned the model using Rudess’ own playing of elements from bass lines to chords to melodies, variations of which Rudess recorded in his New York studio. Along the way, Blanchard ensured the AI would be nimble enough to respond in real-time to Rudess’ improvisations.
“We reframed the project,” says Blanchard, “in terms of musical futures that were hypothesized by the model and that were only being realized at the moment based on what Jordan was deciding.”
As Rudess puts it: “How can the AI respond — how can I have a dialogue with it? That’s the cutting-edge part of what we’re doing.”
Another priority emerged: “In the field of generative AI and music, you hear about startups like Suno or Udio that are able to generate music based on text prompts. Those are very interesting, but they lack controllability,” says Blanchard. “It was important for Jordan to be able to anticipate what was going to happen. If he could see the AI was going to make a decision he didn’t want, he could restart the generation or have a kill switch so that he can take control again.”
In addition to giving Rudess a screen previewing the musical decisions of the model, Blanchard built in different modalities the musician could activate as he plays — prompting the AI to generate chords or lead melodies, for example, or initiating a call-and-response pattern.
“Jordan is the mastermind of everything that’s happening,” he says.
What would Jordan do
Though the residency has wrapped up, the collaborators see many paths for continuing the research. For example, Naseck would like to experiment with more ways Rudess could interact directly with his installation, through features like capacitive sensing. “We hope in the future we’ll be able to work with more of his subtle motions and posture,” Naseck says.
While the MIT collaboration focused on how Rudess can use the tool to augment his own performances, it’s easy to imagine other applications. Paradiso recalls an early encounter with the tech: “I played a chord sequence, and Jordan’s model was generating the leads. It was like having a musical ‘bee’ of Jordan Rudess buzzing around the melodic foundation I was laying down, doing something like Jordan would do, but subject to the simple progression I was playing,” he recalls, his face echoing the delight he felt at the time. “You're going to see AI plugins for your favorite musician that you can bring into your own compositions, with some knobs that let you control the particulars,” he posits. “It’s that kind of world we’re opening up with this.”
Rudess is also keen to explore educational uses. Because the samples he recorded to train the model were similar to ear-training exercises he’s used with students, he thinks the model itself could someday be used for teaching. “This work has legs beyond just entertainment value,” he says.
The foray into artificial intelligence is a natural progression for Rudess’ interest in music technology. “This is the next step,” he believes. When he discusses the work with fellow musicians, however, his enthusiasm for AI often meets with resistance. “I can have sympathy or compassion for a musician who feels threatened, I totally get that,” he allows. “But my mission is to be one of the people who moves this technology toward positive things.”
“At the Media Lab, it’s so important to think about how AI and humans come together for the benefit of all,” says Paradiso. “How is AI going to lift us all up? Ideally it will do what so many technologies have done — bring us into another vista where we’re more enabled.”
“Jordan is ahead of the pack,” Paradiso adds. “Once it’s established with him, people will follow.”
Jamming with MIT
The Media Lab first landed on Rudess’ radar before his residency because he wanted to try out the Knitted Keyboard created by another member of Responsive Environments, textile researcher Irmandy Wickasono PhD ’24. From that moment on, “It's been a discovery for me, learning about the cool things that are going on at MIT in the music world,” Rudess says.
During two visits to Cambridge last spring (assisted by his wife, theater and music producer Danielle Rudess), Rudess reviewed final projects in Paradiso’s course on electronic music controllers, the syllabus for which included videos of his own past performances. He brought a new gesture-driven synthesizer called Osmose to a class on interactive music systems taught by Egozy, whose credits include the co-creation of the video game “Guitar Hero.” Rudess also provided tips on improvisation to a composition class; played GeoShred, a touchscreen musical instrument he co-created with Stanford University researchers, with student musicians in the MIT Laptop Ensemble and Arts Scholars program; and experienced immersive audio in the MIT Spatial Sound Lab. During his most recent trip to campus in September, he taught a masterclass for pianists in MIT’s Emerson/Harris Program, which provides a total of 67 scholars and fellows with support for conservatory-level musical instruction.
“I get a kind of rush whenever I come to the university,” Rudess says. “I feel the sense that, wow, all of my musical ideas and inspiration and interests have come together in this really cool way.”
Science & Tech
Kempner AI cluster named one of world’s fastest ‘green’ supercomputers
The Kempner Institute AI cluster’s graphics processing units are networked together to allow for incredibly fast parallel processing. Credit: Harvard University
Yohan J. John
Harvard Correspondent
November 19, 2024
long read
Computational power can be used to train and run artificial neural networks, creates
Kempner AI cluster named one of world’s fastest ‘green’ supercomputers
Yohan J. John
Harvard Correspondent
long read
Computational power can be used to train and run artificial neural networks, creates key advances in understanding basis of intelligence in natural and artificial systems
Researchers at Harvard now have access to one of the fastest and greenest supercomputers in the world.
Built to support cutting-edge research at the Kempner Institute for the Study of Natural and Artificial Intelligence, and Harvard University more broadly, the Kempner’s AI cluster has just been named the 32nd fastest “green” supercomputer in the world in the Green500, the industry’s premier, independent ranking of the most energy-efficient supercomputers globally. In addition to cracking the top 50 list of green supercomputers, the cluster has been certified as the 85th fastest supercomputer overall in the TOP500, making it one of the fastest and greenest supercomputers on the planet.
“The Kempner AI cluster’s ranking in the latest Green500 and TOP500 lists positions us squarely among the fastest and most eco-friendly AI clusters in academia and the world,” said Max Shad, Kempner senior director of AI/ML research engineering. “It is no small feat to have built this kind of green high-performance computing power in such a short period of time, enabling cutting-edge research that is innovating in real time, and allowing for truly important advancements at the intersection of artificial intelligence and neuroscience.”
High-performance computing forms the backbone of the massive growth in the field of machine learning, and researchers at the Kempner Institute are leveraging this immense computational power to train and run artificial neural networks, leading to key advances in understanding the basis of intelligence in natural and artificial systems.
Measuring green compute power, from flops to gigaflops
The Kempner’s AI cluster opened with an initial pilot installation in spring 2023, and now represents the forefront of Harvard’s growing engagement with state-of-the-art computing resources. Composed of 528 specialized computer processors called graphics processing units (GPUs), which are networked together in parallel with “switches” to enable fast and simultaneous computation, the cluster can run rapid computations on hundreds of research projects at once.
To gauge the cluster’s green computing power and overall computing power, engineers from Lenovo measured the speed of the cluster’s highest-performing GPUs (called H100s) using the LINPACK Benchmark, which requires solving vast linear algebra problems. This is expressed in terms of floating point operations per second, or “flops.” The system’s efficiency, or “green” computing capacity, depends on how many flops the H100s can perform with a given amount of power, which is expressed as gigaflops per watt of power used.
The Kempner’s H100s demonstrated the capability to perform 16.29 petaflops, at an efficiency of 48.065 gigaflops per watt of power used.
Just how fast is the Kempner AI cluster? To get a sense of perspective on the Kempner’s 16.29 petaflops of computing power, consider this: The computers aboard Apollo 11, which took Neil Armstrong and Buzz Aldrin to the moon in 1969, were capable of 12,250 flops. That sounds like a lot, but by the 1980s much faster computations were possible: The CRAY-2 supercomputer recorded a performance of 1.9 gigaflops. That’s 1.9 billion flops. And now we have vastly more computing power in our pockets. The iPhone 15 is capable of more than 1,700 gigaflops. And the Kempner’s AI cluster has more than 16 petaflops of computing power — that’s 16 followed by 15 zeros — which is four orders of magnitude greater than the iPhone in your pocket. These numbers suggest that the ability of a Large Language Model (LLM) to produce grammatically correct language and simulate cognition is more computationally intensive than navigating a rocket to the moon — at least for now.
A supercomputer supporting new research at the Kempner, and across Harvard
With this magnitude of computing power, Kempner researchers are able to train state-of-the-art AI systems like large language models (LLMs), of which ChatGPT is perhaps the best known, quickly and efficiently. For example, the Kempner cluster can train the popular Meta Llama 3.1 8B and Meta Llama 3.1 70B language models in about one week and two months, respectively. Before the Kempner’s cluster was established and operational, training the Llama models on the next-fastest computer system at Harvard would have taken years to complete.
Beyond using the cluster to create faster models, researchers are also employing the cluster to better understand how and why they work. “With this enhanced computational power, we can delve deeper into how generative models learn to reason and complete tasks with greater efficiency,” says Kempner Institute Research Fellow Binxu Wang.
In addition to providing researchers with the capacity to train complex models quickly and efficiently, and to understand the mechanisms behind how they learn, the Kempner cluster enables scientists to compare vast numbers of model architectures and learning algorithms in parallel, with important applications in fields ranging from medicine to neuroscience. One example: In research recently published in Nature Medicine, Kempner associate faculty member and Harvard Medical School Assistant Professor Marinka Zitnik and colleagues used the cluster to develop and train TxGNN, an AI system that distills vast amounts of medical data into knowledge graphs, and then uses the graphs to predict the effectiveness of a drug for treating rare diseases.
The Kempner GPUs form part of Harvard University’s growing computational ecosystem, joining new or soon-to-be-available GPUs supported by Harvard’s Faculty of Arts and Sciences Research Computing (FASRC). More than 5,200 researchers across the University make use of these computing resources in a wide array of scientific and technological applications.
The power of parallel processing
So what exactly is a cluster? As the name suggests, a computing cluster gathers together multiple devices, each of which can function as a full-fledged computer in its own right. Linking devices together unleashes the power of parallel computing, which leads to massive speed-ups in processing time by performing large numbers of tasks simultaneously.
Until a few decades ago, most computers were powered by a central processing unit (CPU) that could only perform one computational operation at a time. By the early 2000s, computer scientists had figured out how to create “multicore” CPUs that perform multiple computations in parallel.
The road to supercomputing clusters like the Kempner’s involved stacking several levels of parallel processing on top of each other. After the introduction of multicore CPUs, the next level of parallelism was enabled by the use of GPUs. Controlling the graphics on a computer screen requires large numbers of very similar computations that can be done simultaneously. For example, displaying a video game requires computing the brightness and color of millions of pixels up to 120 times per second. GPUs perform these numerous yet simple computations in parallel, freeing up the CPU to perform more complex computations.
Computer scientists realized that the capacity of GPUs to perform vast numbers of parallel computations could be repurposed for other tasks, such as machine learning. Running an artificial neural network such as OpenAI’s GPT or DALL-E, for example, involves vast numbers of mathematical operations that can be performed in parallel. But the parallelism doesn’t stop here: Yet another level of parallelism is enabled by linking multiple GPUs together in a network. The Kempner’s network involves hundreds of NVIDIA GPUs — 144 A100s and 384 H100s — that can work in concert. This multilevel parallelism empowers the Kempner’s researchers to perform the dizzyingly intensive computations involved in the study of natural and artificial intelligence and to develop new AI applications in areas such as medicine.
When it comes to fast and flexible experimentation, iteration, and computationally intensive research, the Kempner AI cluster is, in the words of Boaz Barak, “absolutely instrumental.” Barak, a Kempner associate faculty member and professor at the Harvard John A. Paulson School of Engineering and Applied Sciences, says his lab group “relies on extensive computational experiments using the cluster” to study the mechanisms, capabilities, and limitations of deep learning systems. This, he says, allows his lab group to “hone intuitions and study questions as they arise.”
A powerful supercomputer, built to be green
Intentionally built for optimal energy consumption, the Kempner’s AI cluster is also setting a standard for “green” supercomputing. Modern machine learning has resulted in unprecedented advances in AI, but the methods are increasingly energy-intensive. Lowering the carbon footprint of AI is therefore crucial so that advances in AI do not come at the cost of exacerbating global warming.
Housed at the Massachusetts Green High Performance Computer Center (MGHPCC) along with other FASRC resources, and located in the town of Holyoke, Massachusetts, the Kempner’s AI cluster uses a variety of state-of-the-art techniques to minimize energy usage and make every megawatt of power count. The center is powered by the Holyoke municipal electric company, which delivers 100 percent carbon-free energy through a hydroelectric power station and several solar arrays that they operate.
As the central computing hub employed by most of the state’s research universities, including Harvard, MIT, UMass, Northeastern and Boston University, the MGHPCC was the first university research data center to achieve LEED Platinum Certification, the highest level awarded by the Green Building Council’s Leadership in Energy and Environmental Design Program. Moving forward, the Kempner’s partnership with MGHPCC will allow it to continue to grow with efficiency in mind, keeping the Kempner’s AI cluster green and efficient even as it grows into an even faster and more powerful tool for advancement in the field.
“Building an AI cluster that is not just blazing fast but also energy-efficient fits squarely into the Kempner’s mission, both to advance the field of intelligence, and to do so in a way that benefits people,” said Kempner Executive Director Elise Porter. “We have worked closely with MGHPCC to ensure this cluster is built with energy efficiency top of mind, and ranking as the 32nd fastest green supercomputer in the world is a testament to that work.”
Fast, green — and human
While landing a top spot on the TOP500/Green500 list is no small accomplishment, the real power of the Kempner’s work is knowing how to leverage its impressive computing resources to facilitate groundbreaking research. This involves more than building the AI cluster and giving researchers access to it. After all, researchers can’t just copy and paste old code into new machines — certain types of algorithms that work on traditional computers have to be reconceptualized and reformatted to be used with the Kempner’s computing infrastructure.
To this end, the Kempner has assembled a “full-stack” team of professional research engineers and research scientists with expertise ranging from distributed computing to data architecture to computational neuroscience. This Research & Engineering team develops codebases and standards, working with researchers to enable a seamless pipeline connecting scientific problems to computational solutions. The team also ensures that scientific findings are reproducible by helping students, fellows and faculty adopt industry-tested best practices for coding, testing, and maintenance of open repositories for models and data.
This human know-how is central to the ability of the Kempner community — and researchers all across Harvard University — to harness the scientific and technological potential of the green supercomputing power now available at its collective fingertips.
To find out more about the latest Kempner Institute research, check out the Deeper Learning blog.
Across history, Republican presidents rarely fell in line with what many today consider GOP economic orthodoxy, said economist Oren Cass.Photo by Beth Pezzoni
Work & Economy
How free-market policymakers got it all wrong for decades
Conservative economist says singular focus on deregulation, unfettered trade failed to deliver for American households
Christy DeSmith
Harvard Staff Writer
November 19, 2024
How free-market policymakers got it all wrong for decades
Conservative economist says singular focus on deregulation, unfettered trade failed to deliver for American households
Christy DeSmith
Harvard Staff Writer
6 min read
The free-market policymakers of the late 20th and early 21st centuries have “an empirical problem,” said Oren Cass, J.D. ’12, founder and chief economist of the conservative think tank American Compass.
“The stuff they were doing on economics did not work.”
Cass’ ideas, anchored by social conservatism, are gaining traction with a younger set of policymakers on the right. But his pro-worker rhetoric overlaps at times with language used on the left. “Marco Rubio and J.D. Vance on one side and Bernie Sanders and Elizabeth Warren on the other actually see a lot of the same problems in the economy and are willing to say it,” offered Cass, who rang a note of optimism over this “increasing consensus.”
Across U.S. history, he said, Republican presidents rarely fell in line with what many today consider GOP economic orthodoxy. Abraham Lincoln, William McKinley, Teddy Roosevelt Jr., and Richard Nixon all used tariffs to shore up domestic industry and protect the country’s wage earners.
Former President Ronald Reagan, celebrated by conservatives for his embrace of free enterprise, raised taxes at least five times and was far more protectionist than his reputation might suggest. Cass underscored this point by offering background on Reagan’s famous quote: “I’ve always felt the nine most terrifying words in the English language are: I’m from the government, and I’m here to help.”
Reagan uttered these words in 1986 while announcing record-breaking aid to American farmers, including drought assistance and price supports. “One of the very funny things about what we think of as Reaganomics, conservative economics — what I call market fundamentalism — is it’s actually a post-Reagan phenomenon,” Cass said.
How did the market fundamentalism come to dominate politics on the right? Cass, a policy adviser to Mitt Romney’s 2012 presidential campaign, pointed to the distinct interest groups that comprised the famous “three-legged stool” of Reagan’s electoral coalition: social conservatives, economic libertarians, and national security hawks.
“What do these three groups have in common?” Cass asked. “They all really, really, really hate communists. And in the middle of the Cold War, in the context where the Democratic Party was — let’s be honest — a little squishy on communism, getting together everybody who really, really, really hated communism turned out to be a powerful strategy.”
This coalition collapsed in 1989 with the Berlin Wall, Cass continued. That left the three-legged stool in splinters, with each faction vying for supremacy. “That is the economic libertarians unchained from any actual Cold War just running amok,” he argued. “This is [activist] Grover Norquist getting everybody to agree they will never raise taxes under any circumstances.
“And by the time you get to the 2000s, you have a bunch of [President George W.] Bush tax cuts that bear no relationship to any economic priority and manage to send us back into debt while producing no economic growth whatsoever. You have several massive new wars starting to no apparent effect. And you have social conservatives sort of sitting there, losing on their priorities for the most part.”
For 30 years, that group ceded all territory on economic issues, Cass said. “And then they started to say, ‘Wait a minute. The economy that the economic libertarians are producing does not align with any of the things we actually believe equate to human flourishing.’”
Core to Cass’ critique is the economic libertarian focus on cheap consumer goods over building a labor force where workers can support strong families.
As evidence that the free-market era has failed to deliver for the average American household, Cass showed a series of charts detailing everything from the growing U.S. trade deficit to 50 years of stagnant wage growth even amid rising per-capita GDP. Over the same period, deregulation led to the rise of offshoring, while an increasingly dominant financial sector embraced high-speed trading and speculation over investments in U.S. communities.
Cass also shared a data visualization of America’s growing reliance on government transfers, recently published by a bipartisan Economic Innovation Group associated with Facebook founding president Sean Parker. The display can be read as a “massive victory” by free-market thinkers focused, above all, on individual purchasing power, Cass argued.
But he ventured that most Americans are unsettled by increased dependence on Social Security, veterans’ benefits, and other federal aid programs. “This is not actually a sustainable model for a thriving nation either socially or economically,” he said.
“This is not actually a sustainable model for a thriving nation either socially or economically.”
Oren Cass
Conservatives like to approach the market in definitional terms, Cass explained. What is the market, and what is it for? He rejected the terms put forth by former U.S. Senator Pat Toomey during a 2020 talk at the Heritage Foundation.“The market is … really just the name that we assign to the sum total of all the voluntary exchanges that occur every day by free men and women,” Toomey said.
“That’s not a market,” Cass countered. “A market is a much more complex mechanism that allocates labor and capital in response to conditions, rules, and institutions.”
What is the market actually for, in his view? “It’s not just for optimizing consumption,” Cass said. “We need to do a lot more than that, because we don’t want to rely on government to do everything else. We need it to empower workers to support their families. We need it to strengthen the social fabric. We need it to foster domestic investment and innovation.
“And if that’s the case, the role for policymakers isn’t as little as possible,” he concluded. “Their role is to create the rules and support the institutions that will lead to productive applications.”
For roboticists, one challenge towers above all others: generalization — the ability to create machines that can adapt to any environment or condition. Since the 1970s, the field has evolved from writing sophisticated programs to using deep learning, teaching robots to learn directly from human behavior. But a critical bottleneck remains: data quality. To improve, robots need to encounter scenarios that push the boundaries of their capabilities, operating at the edge of their mastery. This proce
For roboticists, one challenge towers above all others: generalization — the ability to create machines that can adapt to any environment or condition. Since the 1970s, the field has evolved from writing sophisticated programs to using deep learning, teaching robots to learn directly from human behavior. But a critical bottleneck remains: data quality. To improve, robots need to encounter scenarios that push the boundaries of their capabilities, operating at the edge of their mastery. This process traditionally requires human oversight, with operators carefully challenging robots to expand their abilities. As robots become more sophisticated, this hands-on approach hits a scaling problem: the demand for high-quality training data far outpaces humans’ ability to provide it.
Now, a team of MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers has developed a novel approach to robot training that could significantly accelerate the deployment of adaptable, intelligent machines in real-world environments. The new system, called “LucidSim,” uses recent advances in generative AI and physics simulators to create diverse and realistic virtual training environments, helping robots achieve expert-level performance in difficult tasks without any real-world data.
LucidSim combines physics simulation with generative AI models, addressing one of the most persistent challenges in robotics: transferring skills learned in simulation to the real world. “A fundamental challenge in robot learning has long been the ‘sim-to-real gap’ — the disparity between simulated training environments and the complex, unpredictable real world,” says MIT CSAIL postdoc Ge Yang, a lead researcher on LucidSim. “Previous approaches often relied on depth sensors, which simplified the problem but missed crucial real-world complexities.”
The multipronged system is a blend of different technologies. At its core, LucidSim uses large language models to generate various structured descriptions of environments. These descriptions are then transformed into images using generative models. To ensure that these images reflect real-world physics, an underlying physics simulator is used to guide the generation process.
The birth of an idea: From burritos to breakthroughs
The inspiration for LucidSim came from an unexpected place: a conversation outside Beantown Taqueria in Cambridge, Massachusetts. “We wanted to teach vision-equipped robots how to improve using human feedback. But then, we realized we didn’t have a pure vision-based policy to begin with,” says Alan Yu, an undergraduate student in electrical engineering and computer science (EECS) at MIT and co-lead author on LucidSim. “We kept talking about it as we walked down the street, and then we stopped outside the taqueria for about half-an-hour. That’s where we had our moment.”
To cook up their data, the team generated realistic images by extracting depth maps, which provide geometric information, and semantic masks, which label different parts of an image, from the simulated scene. They quickly realized, however, that with tight control on the composition of the image content, the model would produce similar images that weren’t different from each other using the same prompt. So, they devised a way to source diverse text prompts from ChatGPT.
This approach, however, only resulted in a single image. To make short, coherent videos that serve as little “experiences” for the robot, the scientists hacked together some image magic into another novel technique the team created, called “Dreams In Motion.” The system computes the movements of each pixel between frames, to warp a single generated image into a short, multi-frame video. Dreams In Motion does this by considering the 3D geometry of the scene and the relative changes in the robot’s perspective.
“We outperform domain randomization, a method developed in 2017 that applies random colors and patterns to objects in the environment, which is still considered the go-to method these days,” says Yu. “While this technique generates diverse data, it lacks realism. LucidSim addresses both diversity and realism problems. It’s exciting that even without seeing the real world during training, the robot can recognize and navigate obstacles in real environments.”
The team is particularly excited about the potential of applying LucidSim to domains outside quadruped locomotion and parkour, their main test bed. One example is mobile manipulation, where a mobile robot is tasked to handle objects in an open area; also, color perception is critical. “Today, these robots still learn from real-world demonstrations,” says Yang. “Although collecting demonstrations is easy, scaling a real-world robot teleoperation setup to thousands of skills is challenging because a human has to physically set up each scene. We hope to make this easier, thus qualitatively more scalable, by moving data collection into a virtual environment.”
Who's the real expert?
The team put LucidSim to the test against an alternative, where an expert teacher demonstrates the skill for the robot to learn from. The results were surprising: Robots trained by the expert struggled, succeeding only 15 percent of the time — and even quadrupling the amount of expert training data barely moved the needle. But when robots collected their own training data through LucidSim, the story changed dramatically. Just doubling the dataset size catapulted success rates to 88 percent. “And giving our robot more data monotonically improves its performance — eventually, the student becomes the expert,” says Yang.
“One of the main challenges in sim-to-real transfer for robotics is achieving visual realism in simulated environments,” says Stanford University assistant professor of electrical engineering Shuran Song, who wasn’t involved in the research. “The LucidSim framework provides an elegant solution by using generative models to create diverse, highly realistic visual data for any simulation. This work could significantly accelerate the deployment of robots trained in virtual environments to real-world tasks.”
From the streets of Cambridge to the cutting edge of robotics research, LucidSim is paving the way toward a new generation of intelligent, adaptable machines — ones that learn to navigate our complex world without ever setting foot in it.
Yu and Yang wrote the paper with four fellow CSAIL affiliates: Ran Choi, an MIT postdoc in mechanical engineering; Yajvan Ravan, an MIT undergraduate in EECS; John Leonard, the Samuel C. Collins Professor of Mechanical and Ocean Engineering in the MIT Department of Mechanical Engineering; and Phillip Isola, an MIT associate professor in EECS. Their work was supported, in part, by a Packard Fellowship, a Sloan Research Fellowship, the Office of Naval Research, Singapore’s Defence Science and Technology Agency, Amazon, MIT Lincoln Laboratory, and the National Science Foundation Institute for Artificial Intelligence and Fundamental Interactions. The researchers presented their work at the Conference on Robot Learning (CoRL) in early November.
For roboticists, one challenge towers above all others: generalization — the ability to create machines that can adapt to any environment or condition. Since the 1970s, the field has evolved from writing sophisticated programs to using deep learning, teaching robots to learn directly from human behavior. But a critical bottleneck remains: data quality. To improve, robots need to encounter scenarios that push the boundaries of their capabilities, operating at the edge of their mastery. This proce
For roboticists, one challenge towers above all others: generalization — the ability to create machines that can adapt to any environment or condition. Since the 1970s, the field has evolved from writing sophisticated programs to using deep learning, teaching robots to learn directly from human behavior. But a critical bottleneck remains: data quality. To improve, robots need to encounter scenarios that push the boundaries of their capabilities, operating at the edge of their mastery. This process traditionally requires human oversight, with operators carefully challenging robots to expand their abilities. As robots become more sophisticated, this hands-on approach hits a scaling problem: the demand for high-quality training data far outpaces humans’ ability to provide it.
Now, a team of MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers has developed a novel approach to robot training that could significantly accelerate the deployment of adaptable, intelligent machines in real-world environments. The new system, called “LucidSim,” uses recent advances in generative AI and physics simulators to create diverse and realistic virtual training environments, helping robots achieve expert-level performance in difficult tasks without any real-world data.
LucidSim combines physics simulation with generative AI models, addressing one of the most persistent challenges in robotics: transferring skills learned in simulation to the real world. “A fundamental challenge in robot learning has long been the ‘sim-to-real gap’ — the disparity between simulated training environments and the complex, unpredictable real world,” says MIT CSAIL postdoc Ge Yang, a lead researcher on LucidSim. “Previous approaches often relied on depth sensors, which simplified the problem but missed crucial real-world complexities.”
The multipronged system is a blend of different technologies. At its core, LucidSim uses large language models to generate various structured descriptions of environments. These descriptions are then transformed into images using generative models. To ensure that these images reflect real-world physics, an underlying physics simulator is used to guide the generation process.
The birth of an idea: From burritos to breakthroughs
The inspiration for LucidSim came from an unexpected place: a conversation outside Beantown Taqueria in Cambridge, Massachusetts. “We wanted to teach vision-equipped robots how to improve using human feedback. But then, we realized we didn’t have a pure vision-based policy to begin with,” says Alan Yu, an undergraduate student in electrical engineering and computer science (EECS) at MIT and co-lead author on LucidSim. “We kept talking about it as we walked down the street, and then we stopped outside the taqueria for about half-an-hour. That’s where we had our moment.”
To cook up their data, the team generated realistic images by extracting depth maps, which provide geometric information, and semantic masks, which label different parts of an image, from the simulated scene. They quickly realized, however, that with tight control on the composition of the image content, the model would produce similar images that weren’t different from each other using the same prompt. So, they devised a way to source diverse text prompts from ChatGPT.
This approach, however, only resulted in a single image. To make short, coherent videos that serve as little “experiences” for the robot, the scientists hacked together some image magic into another novel technique the team created, called “Dreams In Motion.” The system computes the movements of each pixel between frames, to warp a single generated image into a short, multi-frame video. Dreams In Motion does this by considering the 3D geometry of the scene and the relative changes in the robot’s perspective.
“We outperform domain randomization, a method developed in 2017 that applies random colors and patterns to objects in the environment, which is still considered the go-to method these days,” says Yu. “While this technique generates diverse data, it lacks realism. LucidSim addresses both diversity and realism problems. It’s exciting that even without seeing the real world during training, the robot can recognize and navigate obstacles in real environments.”
The team is particularly excited about the potential of applying LucidSim to domains outside quadruped locomotion and parkour, their main test bed. One example is mobile manipulation, where a mobile robot is tasked to handle objects in an open area; also, color perception is critical. “Today, these robots still learn from real-world demonstrations,” says Yang. “Although collecting demonstrations is easy, scaling a real-world robot teleoperation setup to thousands of skills is challenging because a human has to physically set up each scene. We hope to make this easier, thus qualitatively more scalable, by moving data collection into a virtual environment.”
Who's the real expert?
The team put LucidSim to the test against an alternative, where an expert teacher demonstrates the skill for the robot to learn from. The results were surprising: Robots trained by the expert struggled, succeeding only 15 percent of the time — and even quadrupling the amount of expert training data barely moved the needle. But when robots collected their own training data through LucidSim, the story changed dramatically. Just doubling the dataset size catapulted success rates to 88 percent. “And giving our robot more data monotonically improves its performance — eventually, the student becomes the expert,” says Yang.
“One of the main challenges in sim-to-real transfer for robotics is achieving visual realism in simulated environments,” says Stanford University assistant professor of electrical engineering Shuran Song, who wasn’t involved in the research. “The LucidSim framework provides an elegant solution by using generative models to create diverse, highly realistic visual data for any simulation. This work could significantly accelerate the deployment of robots trained in virtual environments to real-world tasks.”
From the streets of Cambridge to the cutting edge of robotics research, LucidSim is paving the way toward a new generation of intelligent, adaptable machines — ones that learn to navigate our complex world without ever setting foot in it.
Yu and Yang wrote the paper with four fellow CSAIL affiliates: Ran Choi, an MIT postdoc in mechanical engineering; Yajvan Ravan, an MIT undergraduate in EECS; John Leonard, the Samuel C. Collins Professor of Mechanical and Ocean Engineering in the MIT Department of Mechanical Engineering; and Phillip Isola, an MIT associate professor in EECS. Their work was supported, in part, by a Packard Fellowship, a Sloan Research Fellowship, the Office of Naval Research, Singapore’s Defence Science and Technology Agency, Amazon, MIT Lincoln Laboratory, and the National Science Foundation Institute for Artificial Intelligence and Fundamental Interactions. The researchers presented their work at the Conference on Robot Learning (CoRL) in early November.
The coloured Cube has been around for 50 years. Its inventor, Ernő Rubik, celebrated his 80th birthday this year. At the invitation of the ETH Department of Mathematics, he spent some time in Zurich to discuss the fascination of the Rubik’s Cube with researchers, students and children.
The coloured Cube has been around for 50 years. Its inventor, Ernő Rubik, celebrated his 80th birthday this year. At the invitation of the ETH Department of Mathematics, he spent some time in Zurich to discuss the fascination of the Rubik’s Cube with researchers, students and children.
Appearing as ‘bumps’ in the data from high-energy experiments, these signals came to be known as short-lived ‘XYZ states.’ They defy the standard picture of particle behaviour and are a problem in contemporary physics, sparking several attempts to understand their mysterious nature.
But theorists at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility in Virginia, with colleagues from the University of Cambridge, suggest the experimental data could be explained with fe
Appearing as ‘bumps’ in the data from high-energy experiments, these signals came to be known as short-lived ‘XYZ states.’ They defy the standard picture of particle behaviour and are a problem in contemporary physics, sparking several attempts to understand their mysterious nature.
But theorists at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility in Virginia, with colleagues from the University of Cambridge, suggest the experimental data could be explained with fewer XYZ states, also called resonances, than currently claimed.
The team used a branch of quantum physics to compute the energy levels, or mass, of particles containing a specific ‘flavour’ of the subatomic building blocks known as quarks. Quarks, along with gluons, a force-carrying particle, make up the Strong Force, one of the four fundamental forces of nature.
The researchers found that multiple particle states sharing the same degree of spin – or angular momentum – are coupled, meaning only a single resonance exists at each spin channel. This new interpretation is contrary to several other theoretical and experimental studies.
The researchers have presented their results in a pair of companion papers published for the international Hadron Spectrum Collaboration (HadSpec) in Physical Review Letters and Physical Review D. The work could also provide clues about an enigmatic particle: X(3872).
The charm quark, one of six quark ‘flavours’, was first observed experimentally in 1974. It was discovered alongside its antimatter counterpart, the anticharm, and particles paired this way are part of an energy region called ‘charmonium.’
In 2003, Japanese researchers discovered a new charmonium candidate dubbed X(3872): a short-lived particle state that appears to defy the present quark model.
“X(3872) is now more than 20 years old, and we still haven’t obtained a clear, simple explanation that everyone can get behind,” said lead author Dr David Wilson from Cambridge’s Department of Applied Mathematics and Theoretical Physics (DAMTP).
Thanks to the power of modern particle accelerators, scientists have detected a hodgepodge of exotic charmonium candidate states over the past two decades.
“High-energy experiments started seeing bumps, interpreted as new particles, almost everywhere they looked,” said co-author Professor Jozef Dudek from William & Mary. “And very few of these states agreed with the model that came before.”
But now, by creating a tiny virtual ‘box’ to simulate quark behaviour, the researchers discovered that several supposed XYZ particles might actually be just one particle seen in different ways. This could help simplify the confusing jumble of data scientists have collected over the years.
Despite the tiny volumes they were working with, the team required enormous computing power to simulate all the possible behaviours and masses of quarks.
The researchers used supercomputers at Cambridge and the Jefferson Lab to infer all the possible ways in which mesons – made of a quark and its antimatter counterpart – could decay. To do this, they had to relate the results from their tiny virtual box to what would happen in a nearly infinite volume – that is, the size of the universe.
“In our calculations, unlike experiment, you can't just fire in two particles and measure two particles coming out,” said Wilson. “You have to simultaneously calculate all possible final states, because quantum mechanics will find those for you.”
The results can be understood in terms of just a single short-lived particle whose appearance could differ depending upon which possible decay state it is observed in.
“We're trying to simplify the picture as much as possible, using fundamental theory with the best methods available,” said Wilson. “Our goal is to disentangle what has been seen in experiments.”
Now that the team has proved this type of calculation is feasible, they are ready to apply it to the mysterious particle X(3872).
“The origin of X(3872) is an open question,” said Wilson. “It appears very close to a threshold, which could be accidental or a key part of the story. This is one thing we will look at very soon."
Professor Christopher Thomas, also from DAMTP, is a member of the Hadron Spectrum Collaboration, and is a co-author on the current studies. Wilson’s contribution was made possible in part by an eight-year fellowship with the Royal Society. The research was also supported in part by the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI). Many of the calculations for this study were carried out with the support of the Cambridge Centre for Data Driven Discovery (CSD3) and DiRAC high-performance computing facilities in Cambridge, managed by Cambridge’s Research Computing Services division.
An elusive particle that first formed in the hot, dense early universe has puzzled physicists for decades. Following its discovery in 2003, scientists began observing a slew of other strange objects tied to the millionths of a second after the Big Bang.
Weill Cornell Medicine and the Cornell Jeb E. Brooks School of Public Policy have established the Cornell Health Policy Center to serve as the locus for health policy impact, research and training across Cornell.
Weill Cornell Medicine and the Cornell Jeb E. Brooks School of Public Policy have established the Cornell Health Policy Center to serve as the locus for health policy impact, research and training across Cornell.
Forty-six NUS researchers have been placed among the world’s most prominent researchers, based on the Highly Cited Researchers 2024 List published by data analytics firm Clarivate. This annual recognition honours researchers who have demonstrated significant and far-reaching influence in their field of research.The Highly Cited Researchers 2024 list features NUS researchers whose publications rank in the top 1 per cent by citations for their respective fields and publication year in the Web of S
Forty-six NUS researchers have been placed among the world’s most prominent researchers, based on the Highly Cited Researchers 2024 List published by data analytics firm Clarivate. This annual recognition honours researchers who have demonstrated significant and far-reaching influence in their field of research.
The Highly Cited Researchers 2024 list features NUS researchers whose publications rank in the top 1 per cent by citations for their respective fields and publication year in the Web of Science over the past decade. These NUS honourees have made significant contributions to diverse fields including, Chemistry, Clinical Medicine, Computer Science, Economics and Business, Engineering, Immunology, Materials Science, Microbiology, Neuroscience and Behaviour, Pharmacology and Toxicology, Physics, Psychiatry and Psychology and more.
This year, 6,636 researchers from 59 countries and regions have been named Highly Cited Researchers. In the list, 3,560 researchers have been recognised in specific fields and 3,326 researchers for cross-field impact, with 238 researchers being named in two or more fields.
Professor Liu Bin, NUS Deputy President (Research and Technology), said, “NUS is incredibly proud of our exceptional researchers, whose dedication to excellence and groundbreaking discoveries continue to push the frontiers of knowledge. Their meaningful contributions have had a profound impact in addressing real-world issues and paving the way towards a better future for all.”
David Pendlebury, Head of Research Analysis at the Institute for Scientific Information at Clarivate, said, “The Highly Cited Researchers list identifies and celebrates exceptional individual researchers at NUS whose significant and broad influence in their fields translates to impact in their research community. Their pioneering innovations contribute to a healthier, more sustainable and secure world. These researchers’ achievements strengthen the foundation of excellence and innovation that drives societal progress.”
The Institute for Scientific Information (ISI) at Clarivate creates a new list of Highly Cited Researchers each year based on a rolling 11-year window of citation evaluation by applying a rigorous editorial selection process to identify trusted journals in the Web of Science.
The 46 highly cited NUS researchers in their respective fields are:
Chemistry
Professor Chen Xiaoyuan, Shawn Clinical Imaging Research Centre, Department of Diagnostic Radiology, NUS Yong Loo Lin School of Medicine & Department of Biomedical Engineering, NUS College of Design and Engineering [Also listed under Materials Science]
Professor Jiang Donglin Department of Chemistry, NUS Faculty of Science
Professor Liu Bin Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering
Professor Xie Jianping Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering & Tianjin University-NUS Joint Institute in Fuzhou
Professor Yang Ning Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering & NUS Centre for Hydrogen Innovations
Clinical Medicine
Professor Carolyn Lam SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme
Professor Wong Tien Yin Office of Academic Medicine, Duke-NUS Medical School
Computer Science
Professor Zhang Rui Department of Electrical and Computer Engineering, NUS College of Design and Engineering
Cross-Field
Emeritus Professor Ang Beng Wah NUS Energy Studies Institute & Department of Industrial Systems Engineering and Management, NUS College of Design and Engineering
Professor Antonio Bertoletti Signature Research Programme in Emerging Infectious Diseases, Duke-NUS Medical School
Professor Chen Wei Department of Chemistry and Department of Physics, NUS Faculty of Science
Associate Professor Goki Eda Department of Chemistry and Department of Physics, NUS Faculty of Science
Professor Ge Shuzhi, Sam Department of Electrical and Computer Engineering, NUS College of Design and Engineering
Professor Derek John Hausenloy Signature Research Programme in Cardiovascular & Metabolic Disorders, Duke-NUS Medical School
Professor Ho Ghim Wei Department of Electrical and Computer Engineering, NUS College of Design and Engineering
Assistant Professor Hou Yi Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering
Assistant Professor Shirin Kalimuddin SingHealth Duke-NUS Medicine Academic Clinical Programme, Duke-NUS Medical School
Associate Professor Sibudjing Kawi Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering
Associate Professor Lee Chengkuo, Vincent Department of Electrical and Computer Engineering, NUS College of Design and Engineering
Professor Leo Yee Sin NUS Saw Swee Hock School of Public Health
Professor Lin Zhiqun Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering
Professor Liu Xiaogang Department of Chemistry, NUS Faculty of Science
Professor Loh Kian Ping Department of Chemistry, NUS Faculty of Science
Professor Low Guek Hong, Jenny SingHealth Duke-NUS Medicine Academic Clinical Programme, Duke-NUS Medical School
Visiting Professor Qiang Yujie Department of Mechanical Engineering, NUS College of Design and Engineering
Assistant Professor Sing Swee Leong Department of Mechanical Engineering, NUS College of Design and Engineering
Dr Su Bin NUS Energy Studies Institute & NUS Centre for Maritime Studies & Department of Industrial Systems Engineering and Management,NUS College of Design and Engineering
Associate Professor Wilson Tam Alice Lee Centre for Nursing Studies, NUS Yong Loo Lin School of Medicine
Assistant Professor Anthony Tanoto Tan Signature Research Programme in Emerging Infectious Diseases, Duke-NUS Medical School
Professor Wang Chi-Hwa Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering
Wang Yuxiang Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering
Adjunct Associate Professor Wang Xiaonan Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering
Associate Professor Zhao Dan Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering
Economics and Business
Professor Jochen Wirtz Department of Marketing, NUS Business School
Engineering
Professor Praveen Linga Department of Chemical and Biomolecular Engineering, NUS College of Design and Engineering
Immunology
Associate Professor Chen Jinmiao Centre for Computational Biology, Duke-NUS Medical School
Dr Chia Wan Ni (Adjunct) Signature Research Programme in Emerging Infectious Diseases, Duke-NUS Medical School
Materials Science
Professor John Wang Department of Materials Science and Engineering, NUS College of Design and Engineering
Microbiology
Professor Wang Linfa Signature Research Programme in Emerging Infectious Diseases, Duke-NUS Medical School
Neuroscience and Behaviour
Assistant Professor Cyrus Ho Department of Psychological Medicine, NUS Yong Loo Lin School of Medicine
Professor Roger Ho Department of Psychological Medicine, NUS Yong Loo Lin School of Medicine [Also listed under Psychiatry and Psychology]
Associate Professor Thomas Yeo Boon Thye Department of Electrical and Computer Engineering, NUS College of Design and Engineering & Centre for Sleep and Cognition and Centre for Translational MR Research, NUS Yong Loo Lin School of Medicine
Pharmacology and Toxicology
Visiting Research Professor Gerrit Storm Department of Surgery, NUS Yong Loo Lin School of Medicine
Physics
Professor Antonio Helio Castro Neto NUS Institute for Functional Intelligent Materials & NUS Centre for Advanced 2D Materials & Department of Physics, NUS Faculty of Science & Department of Materials Science and Engineering, NUS College of Design and Engineering
Professor Sir Konstantin Novoselov NUS Institute for Functional Intelligent Materials & Department of Materials Science and Engineering, NUS College of Design and Engineering
Professor Qiu Cheng-Wei Department of Electrical and Computer Engineering, NUS College of Design and Engineering & Department of Physics, Faculty of Science
Professor Michael Wooldridge appointed as first Ashall Professor of the Foundations of Artificial Intelligence at Oxford, following an endowment to secure the pioneering role.
Professor Michael Wooldridge appointed as first Ashall Professor of the Foundations of Artificial Intelligence at Oxford, following an endowment to secure the pioneering role.
A new $24.79 million project is poised to revolutionise pest management for Australian grain and vegetable growers. This initiative is a crucial step in preparing these key food production industries to reduce reliance on broad-spectrum insecticides and implement innovative strategies to manage pest populations and promote beneficial insects.
A new $24.79 million project is poised to revolutionise pest management for Australian grain and vegetable growers. This initiative is a crucial step in preparing these key food production industries to reduce reliance on broad-spectrum insecticides and implement innovative strategies to manage pest populations and promote beneficial insects.
From early development to old age, cell death is a part of life. Without enough of a critical type of cell death known as apoptosis, animals wind up with too many cells, which can set the stage for cancer or autoimmune disease. But careful control is essential, because when apoptosis eliminates the wrong cells, the effects can be just as dire, helping to drive many kinds of neurodegenerative disease.By studying the microscopic roundworm Caenorhabditis elegans — which was honored with its fourth
From early development to old age, cell death is a part of life. Without enough of a critical type of cell death known as apoptosis, animals wind up with too many cells, which can set the stage for cancer or autoimmune disease. But careful control is essential, because when apoptosis eliminates the wrong cells, the effects can be just as dire, helping to drive many kinds of neurodegenerative disease.
By studying the microscopic roundworm Caenorhabditis elegans — which was honored with its fourth Nobel Prize last month — scientists at MIT’s McGovern Institute for Brain Research have begun to unravel a longstanding mystery about the factors that control apoptosis: how a protein capable of preventing programmed cell death can also promote it. Their study, led by Robert Horvitz, the David H. Koch Professor of Biology at MIT, and reported Oct. 9 in the journal Science Advances, sheds light on the process of cell death in both health and disease.
“These findings, by graduate student Nolan Tucker and former graduate student, now MIT faculty colleague, Peter Reddien, have revealed that a protein interaction long thought to block apoptosis in C. elegans likely instead has the opposite effect,” says Horvitz, who is also an investigator at the Howard Hughes Medical Institute and the McGovern Institute. Horvitz shared the 2002 Nobel Prize in Physiology or Medicine for discovering and characterizing the genes controlling cell death in C. elegans.
Mechanisms of cell death
Horvitz, Tucker, Reddien, and colleagues have provided foundational insights in the field of apoptosis by using C. elegans to analyze the mechanisms that drive apoptosis, as well as the mechanisms that determine how cells ensure apoptosis happens when and where it should. Unlike humans and other mammals, which depend on dozens of proteins to control apoptosis, these worms use just a few. And when things go awry, it’s easy to tell: When there’s not enough apoptosis, researchers can see that there are too many cells inside the worms’ translucent bodies. And when there’s too much, the worms lack certain biological functions or, in more extreme cases, can’t reproduce or die during embryonic development.
Work in the Horvitz lab defined the roles of many of the genes and proteins that control apoptosis in worms. These regulators proved to have counterparts in human cells, and for that reason studies of worms have helped reveal how human cells govern cell death and pointed toward potential targets for treating disease.
A protein’s dual role
Three of C. elegans’ primary regulators of apoptosis actively promote cell death, whereas just one, CED-9, reins in the apoptosis-promoting proteins to keep cells alive. As early as the 1990s, however, Horvitz and colleagues recognized that CED-9 was not exclusively a protector of cells. Their experiments indicated that the protector protein also plays a role in promoting cell death. But while researchers thought they knew how CED-9 protected against apoptosis, its pro-apoptotic role was more puzzling.
CED-9’s dual role means that mutations in the gene that encode it can impact apoptosis in multiple ways. Most ced-9 mutations interfere with the protein’s ability to protect against cell death and result in excess cell death. Conversely, mutations that abnormally activate ced-9 cause too little cell death, just like mutations that inactivate any of the three killer genes.
An atypical ced-9 mutation, identified by Reddien when he was a PhD student in Horvitz’s lab, hinted at how CED-9 promotes cell death. That mutation altered the part of the CED-9 protein that interacts with the protein CED-4, which is proapoptotic. Since the mutation specifically leads to a reduction in apoptosis, this suggested that CED-9 might need to interact with CED-4 to promote cell death.
The idea was particularly intriguing because researchers had long thought that CED-9’s interaction with CED-4 had exactly the opposite effect: In the canonical model, CED-9 anchors CED-4 to cells’ mitochondria, sequestering the CED-4 killer protein and preventing it from associating with and activating another key killer, the CED-3 protein — thereby preventing apoptosis.
To test the hypothesis that CED-9’s interactions with the killer CED-4 protein enhance apoptosis, the team needed more evidence. So graduate student Nolan Tucker used CRISPR gene editing tools to create more worms with mutations in CED-9, each one targeting a different spot in the CED-4-binding region. Then he examined the worms. “What I saw with this particular class of mutations was extra cells and viability,” he says — clear signs that the altered CED-9 was still protecting against cell death, but could no longer promote it. “Those observations strongly supported the hypothesis that the ability to bind CED-4 is needed for the pro-apoptotic function of CED-9,” Tucker explains. Their observations also suggested that, contrary to earlier thinking, CED-9 doesn’t need to bind with CED-4 to protect against apoptosis.
When he looked inside the cells of the mutant worms, Tucker found additional evidence that these mutations prevented CED-9’s ability to interact with CED-4. When both CED-9 and CED-4 are intact, CED-4 appears associated with cells’ mitochondria. But in the presence of these mutations, CED-4 was instead at the edge of the cell nucleus. CED-9’s ability to bind CED-4 to mitochondria appeared to be necessary to promote apoptosis, not to protect against it.
Looking ahead
While the team’s findings begin to explain a long-unanswered question about one of the primary regulators of apoptosis, they raise new ones, as well. “I think that this main pathway of apoptosis has been seen by a lot of people as more-or-less settled science. Our findings should change that view,” Tucker says.
The researchers see important parallels between their findings from this study of worms and what’s known about cell death pathways in mammals. The mammalian counterpart to CED-9 is a protein called BCL-2, mutations in which can lead to cancer. BCL-2, like CED-9, can both promote and protect against apoptosis. As with CED-9, the pro-apoptotic function of BCL-2 has been mysterious. In mammals, too, mitochondria play a key role in activating apoptosis. The Horvitz lab’s discovery opens opportunities to better understand how apoptosis is regulated not only in worms but also in humans, and how dysregulation of apoptosis in humans can lead to such disorders as cancer, autoimmune disease, and neurodegeneration.
From early development to old age, cell death is a part of life. Without enough of a critical type of cell death known as apoptosis, animals wind up with too many cells, which can set the stage for cancer or autoimmune disease. But careful control is essential, because when apoptosis eliminates the wrong cells, the effects can be just as dire, helping to drive many kinds of neurodegenerative disease.By studying the microscopic roundworm Caenorhabditis elegans — which was honored with its fourth
From early development to old age, cell death is a part of life. Without enough of a critical type of cell death known as apoptosis, animals wind up with too many cells, which can set the stage for cancer or autoimmune disease. But careful control is essential, because when apoptosis eliminates the wrong cells, the effects can be just as dire, helping to drive many kinds of neurodegenerative disease.
By studying the microscopic roundworm Caenorhabditis elegans — which was honored with its fourth Nobel Prize last month — scientists at MIT’s McGovern Institute for Brain Research have begun to unravel a longstanding mystery about the factors that control apoptosis: how a protein capable of preventing programmed cell death can also promote it. Their study, led by Robert Horvitz, the David H. Koch Professor of Biology at MIT, and reported Oct. 9 in the journal Science Advances, sheds light on the process of cell death in both health and disease.
“These findings, by graduate student Nolan Tucker and former graduate student, now MIT faculty colleague, Peter Reddien, have revealed that a protein interaction long thought to block apoptosis in C. elegans likely instead has the opposite effect,” says Horvitz, who is also an investigator at the Howard Hughes Medical Institute and the McGovern Institute. Horvitz shared the 2002 Nobel Prize in Physiology or Medicine for discovering and characterizing the genes controlling cell death in C. elegans.
Mechanisms of cell death
Horvitz, Tucker, Reddien, and colleagues have provided foundational insights in the field of apoptosis by using C. elegans to analyze the mechanisms that drive apoptosis, as well as the mechanisms that determine how cells ensure apoptosis happens when and where it should. Unlike humans and other mammals, which depend on dozens of proteins to control apoptosis, these worms use just a few. And when things go awry, it’s easy to tell: When there’s not enough apoptosis, researchers can see that there are too many cells inside the worms’ translucent bodies. And when there’s too much, the worms lack certain biological functions or, in more extreme cases, can’t reproduce or die during embryonic development.
Work in the Horvitz lab defined the roles of many of the genes and proteins that control apoptosis in worms. These regulators proved to have counterparts in human cells, and for that reason studies of worms have helped reveal how human cells govern cell death and pointed toward potential targets for treating disease.
A protein’s dual role
Three of C. elegans’ primary regulators of apoptosis actively promote cell death, whereas just one, CED-9, reins in the apoptosis-promoting proteins to keep cells alive. As early as the 1990s, however, Horvitz and colleagues recognized that CED-9 was not exclusively a protector of cells. Their experiments indicated that the protector protein also plays a role in promoting cell death. But while researchers thought they knew how CED-9 protected against apoptosis, its pro-apoptotic role was more puzzling.
CED-9’s dual role means that mutations in the gene that encode it can impact apoptosis in multiple ways. Most ced-9 mutations interfere with the protein’s ability to protect against cell death and result in excess cell death. Conversely, mutations that abnormally activate ced-9 cause too little cell death, just like mutations that inactivate any of the three killer genes.
An atypical ced-9 mutation, identified by Reddien when he was a PhD student in Horvitz’s lab, hinted at how CED-9 promotes cell death. That mutation altered the part of the CED-9 protein that interacts with the protein CED-4, which is proapoptotic. Since the mutation specifically leads to a reduction in apoptosis, this suggested that CED-9 might need to interact with CED-4 to promote cell death.
The idea was particularly intriguing because researchers had long thought that CED-9’s interaction with CED-4 had exactly the opposite effect: In the canonical model, CED-9 anchors CED-4 to cells’ mitochondria, sequestering the CED-4 killer protein and preventing it from associating with and activating another key killer, the CED-3 protein — thereby preventing apoptosis.
To test the hypothesis that CED-9’s interactions with the killer CED-4 protein enhance apoptosis, the team needed more evidence. So graduate student Nolan Tucker used CRISPR gene editing tools to create more worms with mutations in CED-9, each one targeting a different spot in the CED-4-binding region. Then he examined the worms. “What I saw with this particular class of mutations was extra cells and viability,” he says — clear signs that the altered CED-9 was still protecting against cell death, but could no longer promote it. “Those observations strongly supported the hypothesis that the ability to bind CED-4 is needed for the pro-apoptotic function of CED-9,” Tucker explains. Their observations also suggested that, contrary to earlier thinking, CED-9 doesn’t need to bind with CED-4 to protect against apoptosis.
When he looked inside the cells of the mutant worms, Tucker found additional evidence that these mutations prevented CED-9’s ability to interact with CED-4. When both CED-9 and CED-4 are intact, CED-4 appears associated with cells’ mitochondria. But in the presence of these mutations, CED-4 was instead at the edge of the cell nucleus. CED-9’s ability to bind CED-4 to mitochondria appeared to be necessary to promote apoptosis, not to protect against it.
Looking ahead
While the team’s findings begin to explain a long-unanswered question about one of the primary regulators of apoptosis, they raise new ones, as well. “I think that this main pathway of apoptosis has been seen by a lot of people as more-or-less settled science. Our findings should change that view,” Tucker says.
The researchers see important parallels between their findings from this study of worms and what’s known about cell death pathways in mammals. The mammalian counterpart to CED-9 is a protein called BCL-2, mutations in which can lead to cancer. BCL-2, like CED-9, can both promote and protect against apoptosis. As with CED-9, the pro-apoptotic function of BCL-2 has been mysterious. In mammals, too, mitochondria play a key role in activating apoptosis. The Horvitz lab’s discovery opens opportunities to better understand how apoptosis is regulated not only in worms but also in humans, and how dysregulation of apoptosis in humans can lead to such disorders as cancer, autoimmune disease, and neurodegeneration.
MIT physicists have shown that it should be possible to create an exotic form of matter that could be manipulated to form the qubit (quantum bit) building blocks of future quantum computers that are even more powerful than the quantum computers in development today.The work builds on a discovery last year of materials that host electrons that can split into fractions of themselves but, importantly, can do so without the application of a magnetic field. The general phenomenon of electron fraction
MIT physicists have shown that it should be possible to create an exotic form of matter that could be manipulated to form the qubit (quantum bit) building blocks of future quantum computers that are even more powerful than the quantum computers in development today.
The work builds on a discovery last year of materials that host electrons that can split into fractions of themselves but, importantly, can do so without the application of a magnetic field.
The general phenomenon of electron fractionalization was first discovered in 1982 and resulted in a Nobel Prize. That work, however, required the application of a magnetic field. The ability to create the fractionalized electrons without a magnetic field opens new possibilities for basic research and makes the materials hosting them more useful for applications.
When electrons split into fractions of themselves, those fractions are known as anyons. Anyons come in variety of flavors, or classes. The anyons discovered in the 2023 materials are known as Abelian anyons. Now, in a paper reported in the Oct. 17 issue of Physical Review Letters, the MIT team notes that it should be possible to create the most exotic class of anyons, non-Abelian anyons.
“Non-Abelian anyons have the bewildering capacity of ‘remembering’ their spacetime trajectories; this memory effect can be useful for quantum computing,” says Liang Fu, a professor in MIT’s Department of Physics and leader of the work.
Fu further notes that “the 2023 experiments on electron fractionalization greatly exceeded theoretical expectations. My takeaway is that we theorists should be bolder.”
Fu is also affiliated with the MIT Materials Research Laboratory. His colleagues on the current work are graduate students Aidan P. Reddy and Nisarga Paul, and postdoc Ahmed Abouelkomsan, all of the MIT Department of Phsyics. Reddy and Paul are co-first authors of the Physical Review Letters paper.
The MIT work and two related studies were also featured in an Oct. 17 story in Physics Magazine. “If this prediction is confirmed experimentally, it could lead to more reliable quantum computers that can execute a wider range of tasks … Theorists have already devised ways to harness non-Abelian states as workable qubits and manipulate the excitations of these states to enable robust quantum computation,” writes Ryan Wilkinson.
The current work was guided by recent advances in 2D materials, or those consisting of only one or a few layers of atoms. “The whole world of two-dimensional materials is very interesting because you can stack them and twist them, and sort of play Legos with them to get all sorts of cool sandwich structures with unusual properties,” says Paul. Those sandwich structures, in turn, are called moiré materials.
Anyons can only form in two-dimensional materials. Could they form in moiré materials? The 2023 experiments were the first to show that they can. Soon afterwards, a group led by Long Ju, an MIT assistant professor of physics, reported evidence of anyons in another moiré material. (Fu and Reddy were also involved in the Ju work.)
In the current work, the physicists showed that it should be possible to create non-Abelian anyons in a moiré material composed of atomically thin layers of molybdenum ditelluride. Says Paul, “moiré materials have already revealed fascinating phases of matter in recent years, and our work shows that non-Abelian phases could be added to the list.”
Adds Reddy, “our work shows that when electrons are added at a density of 3/2 or 5/2 per unit cell, they can organize into an intriguing quantum state that hosts non-Abelian anyons.”
The work was exciting, says Reddy, in part because “oftentimes there’s subtlety in interpreting your results and what they are actually telling you. So it was fun to think through our arguments” in support of non-Abelian anyons.
Says Paul, “this project ranged from really concrete numerical calculations to pretty abstract theory and connected the two. I learned a lot from my collaborators about some very interesting topics.”
This work was supported by the U.S. Air Force Office of Scientific Research. The authors also acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center, the Kavli Institute for Theoretical Physics, the Knut and Alice Wallenberg Foundation, and the Simons Foundation.
MIT physicists have shown that it should be possible to create an exotic form of matter that could be manipulated to form the qubit (quantum bit) building blocks of future quantum computers that are even more powerful than the quantum computers in development today.The work builds on a discovery last year of materials that host electrons that can split into fractions of themselves but, importantly, can do so without the application of a magnetic field. The general phenomenon of electron fraction
MIT physicists have shown that it should be possible to create an exotic form of matter that could be manipulated to form the qubit (quantum bit) building blocks of future quantum computers that are even more powerful than the quantum computers in development today.
The work builds on a discovery last year of materials that host electrons that can split into fractions of themselves but, importantly, can do so without the application of a magnetic field.
The general phenomenon of electron fractionalization was first discovered in 1982 and resulted in a Nobel Prize. That work, however, required the application of a magnetic field. The ability to create the fractionalized electrons without a magnetic field opens new possibilities for basic research and makes the materials hosting them more useful for applications.
When electrons split into fractions of themselves, those fractions are known as anyons. Anyons come in variety of flavors, or classes. The anyons discovered in the 2023 materials are known as Abelian anyons. Now, in a paper reported in the Oct. 17 issue of Physical Review Letters, the MIT team notes that it should be possible to create the most exotic class of anyons, non-Abelian anyons.
“Non-Abelian anyons have the bewildering capacity of ‘remembering’ their spacetime trajectories; this memory effect can be useful for quantum computing,” says Liang Fu, a professor in MIT’s Department of Physics and leader of the work.
Fu further notes that “the 2023 experiments on electron fractionalization greatly exceeded theoretical expectations. My takeaway is that we theorists should be bolder.”
Fu is also affiliated with the MIT Materials Research Laboratory. His colleagues on the current work are graduate students Aidan P. Reddy and Nisarga Paul, and postdoc Ahmed Abouelkomsan, all of the MIT Department of Phsyics. Reddy and Paul are co-first authors of the Physical Review Letters paper.
The MIT work and two related studies were also featured in an Oct. 17 story in Physics Magazine. “If this prediction is confirmed experimentally, it could lead to more reliable quantum computers that can execute a wider range of tasks … Theorists have already devised ways to harness non-Abelian states as workable qubits and manipulate the excitations of these states to enable robust quantum computation,” writes Ryan Wilkinson.
The current work was guided by recent advances in 2D materials, or those consisting of only one or a few layers of atoms. “The whole world of two-dimensional materials is very interesting because you can stack them and twist them, and sort of play Legos with them to get all sorts of cool sandwich structures with unusual properties,” says Paul. Those sandwich structures, in turn, are called moiré materials.
Anyons can only form in two-dimensional materials. Could they form in moiré materials? The 2023 experiments were the first to show that they can. Soon afterwards, a group led by Long Ju, an MIT assistant professor of physics, reported evidence of anyons in another moiré material. (Fu and Reddy were also involved in the Ju work.)
In the current work, the physicists showed that it should be possible to create non-Abelian anyons in a moiré material composed of atomically thin layers of molybdenum ditelluride. Says Paul, “moiré materials have already revealed fascinating phases of matter in recent years, and our work shows that non-Abelian phases could be added to the list.”
Adds Reddy, “our work shows that when electrons are added at a density of 3/2 or 5/2 per unit cell, they can organize into an intriguing quantum state that hosts non-Abelian anyons.”
The work was exciting, says Reddy, in part because “oftentimes there’s subtlety in interpreting your results and what they are actually telling you. So it was fun to think through our arguments” in support of non-Abelian anyons.
Says Paul, “this project ranged from really concrete numerical calculations to pretty abstract theory and connected the two. I learned a lot from my collaborators about some very interesting topics.”
This work was supported by the U.S. Air Force Office of Scientific Research. The authors also acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center, the Kavli Institute for Theoretical Physics, the Knut and Alice Wallenberg Foundation, and the Simons Foundation.
Science & Tech
How humans evolved to be ‘energetically unique’
Andrew Yegian and Daniel Lieberman.Photo by Dylan Goodman
Anne J. Manning
Harvard Staff Writer
November 18, 2024
4 min read
Metabolic rates outpaced ‘couch potato’ primates thanks to sweat, says new study
Humans, it turns out, possess much higher metabolic rates than other mammals, including our close relatives, apes and
Metabolic rates outpaced ‘couch potato’ primates thanks to sweat, says new study
Humans, it turns out, possess much higher metabolic rates than other mammals, including our close relatives, apes and chimpanzees, finds a new Harvard study. Having both high resting and active metabolism, researchers say, enabled our hunter-gatherer ancestors to get all the food they needed while also growing bigger brains, living longer, and increasing their rates of reproduction.
“Humans are off-the-charts different from any creature that we know of so far in terms of how we use energy,” said study co-author and paleoanthropologist Daniel Lieberman, the Edwin M. Lerner Professor of Biological Sciences in the Department of Human Evolutionary Biology.
The paper, published Monday in Proceedings of the National Academy of Sciences, challenges a previous consensus that human and non-human primates’ metabolic rates are either the same or lower than would be expected for their body size.
Using a new comparison method that they say better corrects for body size, environmental temperature, and body fat, the researchers found that humans, unlike most mammals including other primates, have evolved to escape a tradeoff between resting and active metabolic rates.
Animals take in calories through food and, like a bank account, spend them on expenses mostly divided between two broad metabolic categories: resting and physical activity. In other primates, there is a distinct tradeoff between resting and active metabolic rates, which helps explain why chimpanzees, with their large brains, costly reproductive strategies, and lifespans, and thus high resting metabolisms, are “couch potatoes” who spend much of their day eating, said Lieberman.
Generally, the energy animals spend on metabolism ends up as heat, which is hard to dissipate in warm environments. Because of this tradeoff, animals such as chimpanzees who spend a great deal of energy on their resting metabolism and also inhabit warm, tropical environments, have to have low activity levels.
“Humans have increased not only our resting metabolisms beyond what even chimpanzees and monkeys have, but — thanks to our unique ability to dump heat by sweating — we’ve also been able to increase our physical activity levels without lowering our resting metabolic rates,” said co-author Andrew Yegian, a senior researcher in Lieberman’s lab.
“The result is that we are an energetically unique species.”
The team’s analysis shows that monkeys and apes evolved to invest about 30 to 50 percent more calories in their resting metabolic rates than other mammals of the same size, and that humans have taken this to a further extreme, investing 60 percent more calories than similar-sized mammals.
“We started off questioning if it was possible that humans and other primates could have comparatively low total metabolic rates, which other researchers had proposed,” Yegian said. “We tried to come up with a better way to analyze it using quotients. That’s when we hit the accelerator.”
The research team — which includes collaborators at Louisiana’s Pennington Biomedical Research Center and the University of Kiel in Germany — plans to further investigate metabolic differences among human populations. For example, subsistence farmers who grow all the food they eat without the help of machines have significantly higher physical activity levels than both hunter-gatherers and people in industrial environments like Americans. However, all human populations, regardless of activity levels, spend similar amounts of energy for their body size on their resting metabolic rates.
“What we’re really interested in is variation among humans in metabolic rates, especially in today’s world of increasing technology and lower levels of physical activity,” said Yegian. “Since we evolved to be active, how does having a desk job change our metabolism in ways that affect health?”
Host Meira Levinson (clockwise from top left), Carlton Green, Richard Weissbourd, and Kara Pranikoff.Stephanie Mitchell/Harvard Staff Photographer
Nation & World
Seeing schools as ‘laboratories of democracy’
Encounters with different perspectives are a key part of the learning experience, panelists say
Liz Mineo
Harvard Staff Writer
November 18, 2024
3 min read
An Ed School panel high
Encounters with different perspectives are a key part of the learning experience, panelists say
Liz Mineo
Harvard Staff Writer
3 min read
An Ed School panel highlighted the critical role schools can play in helping students learn to listen to different perspectives and have conversations across divides in a webinar on Thursday.
“Schools are one of the places where people with diverse perspectives are often together,” said Richard Weissbourd, senior lecturer on education. “Other settings are often not diverse, or at least they’re contained or bounded in ways that schools are not … Schools can be laboratories of democracy.”
Led by Meira Levinson, Juliana W. and William Foss Thompson Professor of Education and Society, the panel made the case for schools as ideal settings for lessons in compromise and civil disagreement.
“Schools are socializing agents,” said Carlton Green, an assistant clinical professor and co-director of Intergroup Dialogue Training Center at the University of Maryland. “That is where we learn some of the ethic around how to be in community with other people, especially people who are different from us.”
Educators help students learn interpersonal skills and how to navigate conflict, the panelists noted, fostering their social and emotional development. Although that work has been part of education for decades, the concept of “social-emotional learning” has recently come under attack by some conservative activists — and parents — who insist that teachers should focus strictly on academic learning.
Kara Pranikoff, an education consultant and coach, pushed back on that idea.
“We have this tendency to say that social-emotional learning is one thing, and academic learning is another thing,” said Pranikoff. “But we cannot separate our social-emotional selves from our academic selves. It’s just not possible, even if people report that it is. It’s not part of being a human. They go hand in hand.”
As microcosms of society, schools experience their own versions of national debates over issues such as religion, LGBTQ rights, and immigration, creating third-rail moments for teachers, the panelists said.
“There are things that you can say that are going to trigger a parent,” Weissbourd said. “Without support from your administration, these conversations become very difficult.”
But those conversations are important, said Weissbourd, who directs the Ed School program Making Caring Common, which provides resources for families and educators to help children develop empathy and other emotional capacities.
“It’s important to be able to mend fractures and for people to get along,” said Weissbourd. “But we want to have these conversations because we really believe in principles of human rights, justice, inclusion, and fairness. Part of the work, too, is how do you have conversations in ways that advance those principles?”
Educators should rise to their daily challenges by communicating with parents and building support from school administrators, Green said.
“I’d say to parents, ‘I think you want me to help your child be a good human, right?’ and if you have questions about me helping your child to be a good human in the context of the other little humans, I’m open to that, but that’s what I’m committed to doing,” said Green. “We are educating good humans here.”
The event is at 5:30 p.m. Wednesday in McCosh Hall and will be livestreamed on Princeton's YouTube channel. While tickets are sold out, there will be a waiting line for any seats not filled by 5:25 p.m.
The event is at 5:30 p.m. Wednesday in McCosh Hall and will be livestreamed on Princeton's YouTube channel. While tickets are sold out, there will be a waiting line for any seats not filled by 5:25 p.m.
In a QA, Fred Dickinson of the Department of History discusses his semester as a Fulbright U.S. Scholar in Vietnam and building out Southeast Asian studies at Penn.
In a QA, Fred Dickinson of the Department of History discusses his semester as a Fulbright U.S. Scholar in Vietnam and building out Southeast Asian studies at Penn.
Health
Too much sitting hurts the heart
Even with exercise, sedentary behavior can increase risk of heart failure by up to 60%, according to study
MGB Communications
November 18, 2024
4 min read
A new study shows that being sedentary increases the risk of the most common types of heart disease, even among those who get enough exercise.
Investigators at Mass General Brigham found sedentary behav
Even with exercise, sedentary behavior can increase risk of heart failure by up to 60%, according to study
MGB Communications
4 min read
A new study shows that being sedentary increases the risk of the most common types of heart disease, even among those who get enough exercise.
Investigators at Mass General Brigham found sedentary behavior was associated with higher risks of all four types of heart disease, with a marked 40-60 percent greater risk of heart failure and cardiovascular death when sedentary behavior exceeded 10.6 hours a day. (Sedentary behavior is defined as waking activity with low energy expenditure while sitting, reclining, or lying down and does not include hours spent sleeping at night.)
Researchers also emphasized that meeting guideline levels of moderate-to-vigorous physical activity may be insufficient on its own to reduce cardiovascular risk if one is also sitting too much.
“Many of us spend the majority of our waking day sitting, and while there’s a lot of research supporting the importance of physical activity, we knew relatively little about the potential consequences of sitting too much beyond a vague awareness that it might be harmful,” said lead author Ezimamaka Ajufo, a cardiology fellow at Brigham and Women’s Hospital.
“Sedentary risk remained even in people who were physically active, which is important because many of us sit a lot and think that if we can get out at the end of the day and do some exercise we can counterbalance it,” Ajufo says. “However, we found it to be more complex than that.”
Ajufo’s team, which included researchers from across MGB, analyzed one week of activity-tracker data from 89,530 individuals from the U.K. Biobank prospective cohort.
They looked at associations between daily time spent sitting and the future risk of four common cardiovascular diseases: atrial fibrillation, heart attacks, heart failure, and death from cardiovascular causes. The team used a machine learning algorithm to classify sedentary behavior.
Many of the negative effects of sedentary behavior persisted even among those individuals who achieved the guideline-recommended more than 150 minutes of moderate-to-vigorous physical activity per week.
For example, although the study found that the risk of atrial fibrillation and heart attacks could be mostly eliminated by engaging in physical activity, the excess risk of heart failure and cardiovascular death could only be partially offset by physical activity.
“Our data supports the idea that it is always better to sit less and move more to reduce heart disease risk, and that avoiding excessive sitting is especially important for lowering risk of heart failure and cardiovascular death,” said co-senior author Shaan Khurshid, an electrophysiologist and faculty member in the Telemachus And Irene Demoulas Family Foundation Center for Cardiac Arrythmias at Massachusetts General Hospital.
The research team hopes these findings will help inform future guidelines and public health efforts. They would like future prospective studies to test the efficacy of public health interventions that help people reduce the number of hours they spend being sedentary and see how that affects cardiovascular health.
Next, they plan to extend this research to investigate the impacts of sedentary behavior on a range of other diseases and for longer spans of time.
“Exercise is critical, but avoiding excessive sitting appears separately important,” said co-senior author Patrick Ellinor, a cardiologist and co-director of the Corrigan Minehan Heart Center at Massachusetts General Hospital. “Our hope is that this work can empower patients and providers by offering another way to leverage movement behaviors to improve cardiovascular health.”
Authorship: Additional Mass General Brigham authors include Timothy W. Churchill, J. Sawalla Guseh, and Krishna G. Aragam. Additional authors include Shinwan Kany and Joel T. Rämö.
Disclosures: Krishna G. Aragam receives sponsored research support from Sarepta Therapeutics and Bayer AG; he also reports a research collaboration with the Novartis Institutes for Biomedical Research. Patrick T. Ellinor receives sponsored research support from Bayer AG, IBM Research, Bristol Myers Squibb, Pfizer and Novo Nordisk; he has also served on advisory boards and/or consulted for Bayer AG.
Researchers were supported by the John S. LaDue Memorial Fellowship in Cardiovascular Medicine or Vascular Biology grant, the Walter Benjamin Fellowship from the Deutsche Forschungsgemeinschaft (521832260), a research fellowship from the Sigrid Jusélius Foundation, the National Institutes of Health (K23HL159262-01A1, 1K08HL153937, RO1HL092577, R01HL157635, and K23HL169839-01), the American Heart Association (19AMFDP34990046, 862032, 18SFRN34230127, 961045, and 2023CDA1050571), the President and Fellows of Harvard College (5KL2TR002542-04), and the European Union (MAESTRIA 965286).
MIT physicists have taken a key step toward solving the puzzle of what leads electrons to split into fractions of themselves. Their solution sheds light on the conditions that give rise to exotic electronic states in graphene and other two-dimensional systems.The new work is an effort to make sense of a discovery that was reported earlier this year by a different group of physicists at MIT, led by Assistant Professor Long Ju. Ju’s team found that electrons appear to exhibit “fractional charge” i
MIT physicists have taken a key step toward solving the puzzle of what leads electrons to split into fractions of themselves. Their solution sheds light on the conditions that give rise to exotic electronic states in graphene and other two-dimensional systems.
The new work is an effort to make sense of a discovery that was reported earlier this year by a different group of physicists at MIT, led by Assistant Professor Long Ju. Ju’s team found that electrons appear to exhibit “fractional charge” in pentalayer graphene — a configuration of five graphene layers that are stacked atop a similarly structured sheet of boron nitride.
Ju discovered that when he sent an electric current through the pentalayer structure, the electrons seemed to pass through as fractions of their total charge, even in the absence of a magnetic field. Scientists had already shown that electrons can split into fractions under a very strong magnetic field, in what is known as the fractional quantum Hall effect. Ju’s work was the first to find that this effect was possible in graphene without a magnetic field — which until recently was not expected to exhibit such an effect.
The phenemonon was coined the “fractional quantum anomalous Hall effect,” and theorists have been keen to find an explanation for how fractional charge can emerge from pentalayer graphene.
The new study, led by MIT professor of physics Senthil Todadri, provides a crucial piece of the answer. Through calculations of quantum mechanical interactions, he and his colleagues show that the electrons form a sort of crystal structure, the properties of which are ideal for fractions of electrons to emerge.
“This is a completely new mechanism, meaning in the decades-long history, people have never had a system go toward these kinds of fractional electron phenomena,” Todadri says. “It’s really exciting because it makes possible all kinds of new experiments that previously one could only dream about.”
The team’s study appeared last week in the journal Physical Review Letters. Two other research teams — one from Johns Hopkins University, and the other from Harvard University, the University of California at Berkeley, and Lawrence Berkeley National Laboratory — have each published similar results in the same issue. The MIT team includes Zhihuan Dong PhD ’24 and former postdoc Adarsh Patri.
“Fractional phenomena”
In 2018, MIT professor of physics Pablo Jarillo-Herrero and his colleagues were the first to observe that new electronic behavior could emerge from stacking and twisting two sheets of graphene. Each layer of graphene is as thin as a single atom and structured in a chicken-wire lattice of hexagonal carbon atoms. By stacking two sheets at a very specific angle to each other, he found that the resulting interference, or moiré pattern, induced unexpected phenomena such as both superconducting and insulating properties in the same material. This “magic-angle graphene,” as it was soon coined, ignited a new field known as twistronics, the study of electronic behavior in twisted, two-dimensional materials.
“Shortly after his experiments, we realized these moiré systems would be ideal platforms in general to find the kinds of conditions that enable these fractional electron phases to emerge,” says Todadri, who collaborated with Jarillo-Herrero on a study that same year to show that, in theory, such twisted systems could exhibit fractional charge without a magnetic field. “We were advocating these as the best systems to look for these kinds of fractional phenomena,” he says.
Then, in September of 2023, Todadri hopped on a Zoom call with Ju, who was familiar with Todari’s theoretical work and had kept in touch with him through Ju’s own experimental work.
“He called me on a Saturday and showed me the data in which he saw these [electron] fractions in pentalayer graphene,” Todadri recalls. “And that was a big surprise because it didn’t play out the way we thought.”
In his 2018 paper, Todadri predicted that fractional charge should emerge from a precursor phase characterized by a particular twisting of the electron wavefunction. Broadly speaking, he theorized that an electron’s quantum properties should have a certain twisting, or degree to which it can be manipulated without changing its inherent structure. This winding, he predicted, should increase with the number of graphene layers added to a given moiré structure.
“For pentalayer graphene, we thought the wavefunction would wind around five times, and that would be a precursor for electron fractions,” Todadri says. “But he did his experiments and discovered that it does wind around, but only once. That then raised this big question: How should we think about whatever we are seeing?”
Extraordinary crystal
In the team’s new study, Todadri went back to work out how electron fractions could emerge from pentalayer graphene if not through the path he initially predicted. The physicists looked through their original hypothesis and realized they may have missed a key ingredient.
“The standard strategy in the field when figuring out what’s happening in any electronic system is to treat electrons as independent actors, and from that, figure out their topology, or winding,” Todadri explains. “But from Long’s experiments, we knew this approximation must be incorrect.”
While in most materials, electrons have plenty of space to repel each other and zing about as independent agents, the particles are much more confined in two-dimensional structures such as pentalayer graphene. In such tight quarters, the team realized that electrons should also be forced to interact, behaving according to their quantum correlations in addition to their natural repulsion. When the physicists added interelectron interactions to their theory, they found it correctly predicted the winding that Ju observed for pentalayer graphene.
Once they had a theoretical prediction that matched with observations, the team could work from this prediction to identify a mechanism by which pentalayer graphene gave rise to fractional charge.
They found that the moiré arrangement of pentalayer graphene, in which each lattice-like layer of carbon atoms is arranged atop the other and on top of the boron-nitride, induces a weak electrical potential. When electrons pass through this potential, they form a sort of crystal, or a periodic formation, that confines the electrons and forces them to interact through their quantum correlations. This electron tug-of-war creates a sort of cloud of possible physical states for each electron, which interacts with every other electron cloud in the crystal, in a wavefunction, or a pattern of quantum correlations, that gives the winding that should set the stage for electrons to split into fractions of themselves.
“This crystal has a whole set of unusual properties that are different from ordinary crystals, and leads to many fascinating questions for future research,” Todadri says. “For the short term, this mechanism provides the theoretical foundation for understanding the observations of fractions of electrons in pentalayer graphene and for predicting other systems with similar physics.”
This work was supported, in part, by the National Science Foundation and the Simons Foundation.
The XPRIZE Rainforest competition acknowledged ETH Zurich-led team for its development and deployment of novel, autonomous technologies that enable near real-time insights about biodiversity.
The XPRIZE Rainforest competition acknowledged ETH Zurich-led team for its development and deployment of novel, autonomous technologies that enable near real-time insights about biodiversity.
The VCA Art Grad Show returns this week with an extraordinary display of new work by graduating students at the University of Melbournes Victorian College of the Arts (VCA).
The VCA Art Grad Show returns this week with an extraordinary display of new work by graduating students at the University of Melbournes Victorian College of the Arts (VCA).
Getty Images
Campus & Community
8 Harvard students named Rhodes Scholars
5 in U.S. class, most for any institution, joined by 3 international recipients
FAS Communications
November 17, 2024
4 min read
Five Harvard College students are among the 32 U.S. Rhodes Scholars for 2025, the most awarded to any institution this year. Three international students in the College also received Rhodes Schola
5 in U.S. class, most for any institution, joined by 3 international recipients
FAS Communications
4 min read
Five Harvard College students are among the 32 U.S. Rhodes Scholars for 2025, the most awarded to any institution this year. Three international students in the College also received Rhodes Scholarships, bringing Harvard’s total to eight.
The students will attend Oxford University next year to pursue graduate studies in fields ranging from political theory to neuroscience.
Harvard’s 2025 Rhodes Scholars:
Matthew Anzarouth of Quebec, Canada, was awarded a Rhodes Scholarship for Canada. A former competitive debater, Anzarouth won the World Schools Debating Championship with Team Canada in 2020 and 2021, and competed for the Harvard College Debating Union in his first year at the University. During his time at Harvard, where he concentrated in social studies, he served as senior world editor at the Harvard Political Review, co-founded and co-hosted a podcast exploring political and philosophical issues, and coached debate for high school students. Combining his interests in political theory and Canadian politics, Anzarouth is writing his senior thesis on Canadian federalism and multiculturalism. He plans to study political theory at Oxford.
Lena R. Ashooh of Shelburne, Vermont, designed a major in animal studies, with research in philosophy, psychology, biology, political science, and other disciplines. She has worked with land law examiners as an intern at the U.S. Bureau of Land Management and has lobbied legislators as an environmental justice intern at the Center on Race, Poverty, and the Environment, a California nonprofit. Ashooh conducted field research on macaque monkeys in Puerto Rico, plays classical harp, and has created a stop-motion animation film about the ethics of eating animals. She plans to study political theory at Oxford.
Shahmir Aziz of Lahore, Pakistan, was named one of two Rhodes Scholars for Pakistan last month. He has conducted research in drug delivery and bio-nanotechnology. Outside the classroom, he is passionate about diplomacy and global governance, serving as a leader of the Harvard International Relations Council and Harvard’s Model UN Team. Aziz plans to continue researching bio-nanotechnology at Oxford while also studying diplomacy with a focus on global health to better understand how to cultivate cross-border ideas in biotech.
Thomas Barone of Little Falls, New Jersey, is a social studies concentrator focused on intellectual history, political rhetoric, and policy. He has interned at the national politics desk of ABC News and serves as editorial chair of The Harvard Crimson, where he won first place for editorial writing in collegiate journalism in the Society of Professional Journalists’ Mark of Excellence Awards. Barone intends to study history at Oxford and plans to pursue a career in journalism.
Sofia L. Corona of Delray Beach, Florida, is studying applied mathematics and economics. She designed her course of study to develop a multidisciplinary perspective on issues in transportation policy, including infrastructure development, clean energy governance, and community decision-making. She worked on federal transportation oversight cases as a legal intern at the U.S. Department of Transportation; researched community participation and renewable energy implementation at the Allen Lab for Democracy Renovation in Harvard Kennedy School’s Ash Center for Democratic Governance and Innovation; and analyzed alternative vehicle upgrades for car models at BMW. She has climbed Aconcagua, Denali, and Mount Kilimanjaro. At Oxford, Corona plans to pursue economics and focus on development, sustainability, and enterprise.
Aneesh Muppidi of Schenectady, New York, is a concentrator in computer science and neuroscience. He has conducted research at the Computational Robotics Lab and the Computational Cognitive Neuroscience Lab, both at Harvard, and MIT’s Fiete Lab, and has been involved in AI policy discussions for New York State and the federal government. Muppidi served as president of the Harvard Computational Neuroscience Undergraduate Society, co-president of the Hindu Students Association, and president of the Harvard Spikeball Club. At Oxford, he will study advanced computer science and public policy.
Ayush Noori of Bellevue, Washington, is studying computer science and neuroscience. His research uses artificial intelligence to comb large-scale biomedical data for diagnosis and treatment options, and he has developed an AI model that can be deployed to predict treatment outcomes in bipolar disorder, Parkinson’s disease, and neuropathic conditions. He has co-authored more than 20 peer-reviewed papers and was awarded the Barry Goldwater Scholarship for natural sciences. Noori is co-founder and co-president of the Harvard Undergraduate OpenBio Laboratory. At Oxford, he hopes to complete degrees in clinical neurosciences and in physiology, anatomy, and genetics.
Laura Wegner of Walsrode, Germany, was one of two recipients of German Rhodes Scholarships. She studies economics and computer science and founded Mii, a digital healthcare passport that empowers patients to manage and access their health records anywhere in the world. At Oxford, Wegner plans to pursue graduate work focused on digital health care technology.
Read more about this year’s Rhodes Scholars at the Rhodes Trust.
Lawrence Summers (right) talks with journalist John Ellis at Harvard Kennedy School.Photo by Martha Stewart
Nation & World
Summers says Trump’s plans could damage economy
Professor and former Treasury secretary discusses why Democrats lost election, need for more patriotism
Christina Pazzanese
Harvard Staff Writer
November 15, 2024
5 min read
Democrats lost the 2024 election because t
Professor and former Treasury secretary discusses why Democrats lost election, need for more patriotism
Christina Pazzanese
Harvard Staff Writer
5 min read
Democrats lost the 2024 election because they paid too much attention to positive macroeconomic trendlines and not enough to Americans’ economic reality, according to economist Larry Summers.
“In too many ways, Democrats have lost sight of the common man and woman in favor of the attitudes and philosophies of the faculty common room,” said Summers during a talk Thursday night on why the Democrats lost the 2024 election and the risks President-elect Donald Trump’s policy plans pose for the U.S. economy.
Many voters moved toward the Republican Party and Trump, who hammered Democrats over inflation, because they felt the GOP understood what they were going through better than Democrats, who strayed from their traditional focus on issues like kitchen-table economics, said Summers, who was Treasury secretary during the Clinton administration and is currently the Charles W. Eliot University Professor and the Frank and Denie Weil Director of the Mossavar-Rahmani Center for Business and Government at the Harvard Kennedy School.
The Federal Reserve also contributed to voters’ anger over inflation, he suggested.
In 2021, when $2.5 trillion in stimulus funding was flooding the economy, the Fed was still anticipating interest rates would stay at 0 percent through summer 2024 and buying back long-term Treasury debt by issuing “what was, in effect, floating-rate short-term debt.” This led to significant losses to the government that some estimate — in market value terms — at $500 billion to $1 trillion, before the Fed finally course-corrected, said Summers, who also served as director of National Economic Council during the Obama administration.
“I think that if there had not been hyper-expansionary policy in 2021, it would have been easier for Democrats to escape blame for whatever inflation took place,” he said.
Summers worries the Fed could err once again during the new administration given current economic conditions, and he warned Trump’s economic policy plans, such as raising or adding new tariffs, could worsen inflation.
“If President Trump does what he said he would do during his campaign, the inflation shock administered to the economy is substantially larger than anything that happened at the beginning of the last administration,” Summers said.
“He’s vowed huge deficit increases through continuation of his tax cuts and new tax cuts; he has trashed the idea of the independence of the central bank; he said that we should want to have a less highly valued currency, which means less valuable money [and] higher prices, and that’s just on the demand side,” he said.
More importantly, “He’s talked about a big tariff on every good that we import, which means higher import prices [and] also means higher prices for everything that competes with imports,” Summers said.
Summers criticized Trump’s promise to implement 60 percent tariffs on all Chinese goods, saying it will not only force American consumers to pay much higher prices, but will further strain U.S.-China relations. The U.S. ought to precisely “calibrate” its trade policies to the nation’s overall strategic objectives, he said.
“At a time when the Chinese economy is struggling, when there are very difficult economic problems, the worst thing we could do would be to make it completely easy for the Chinese government to scapegoat us for their own economic failings. And so, we need to be very careful that we are focused on our own security [and] … not pursue policies that can be interpreted as reflecting a generalized desire to suppress the Chinese economy,” he said, adding “That’s going to require subtle choices about policy and it’s going to require not bluster, but very careful communication.”
In addition, tightening U.S. borders is “clearly something we have to do,” he noted. “But if you’re talking about sending millions of people out of the country who are here now, that’s a prescription for large-scale labor shortages, and we’ve seen in the past what that does to inflation.”
Vice President Kamala Harris made a pitch to voters who “love our country,” a sentiment Summers said he’d like to see the Democratic Party and institutions like Harvard champion.
“I’d frankly like to see it as a value embraced more in our University, where it’s not something we talk about or celebrate or think about,” he said. “There’s plenty that we have done wrong in our history. But there’s something odd about the degree to which the history that is received in our educational system is as negative about our country as it is.”
The University needs to “find a way” to encourage patriotism as a positive principle on campus because the U.S. today faces “real threats” and because it is “an alternative to each subgroup of Americans embracing a particular identity, which leads to a great deal of divisiveness.”
Rector Günther Dissertori explained on the 169th anniversary of ETH Zurich the fundamental objective he was pursuing with a reform package in teaching. President of ETH Zurich Joël Mesot and Federal Councillor Albert Rösti also spoke to the many guests from politics, business and science. The Head of the Federal Department of the Environment, Transport, Energy and Communications and former ETH graduate gave this year’s ceremonial address.
Rector Günther Dissertori explained on the 169th anniversary of ETH Zurich the fundamental objective he was pursuing with a reform package in teaching. President of ETH Zurich Joël Mesot and Federal Councillor Albert Rösti also spoke to the many guests from politics, business and science. The Head of the Federal Department of the Environment, Transport, Energy and Communications and former ETH graduate gave this year’s ceremonial address.
Katharine Strunk, dean of the Graduate School of Education, began her tenure in July 2023. This week, she announced the School’s strategic vision, Together for Good.
Katharine Strunk, dean of the Graduate School of Education, began her tenure in July 2023. This week, she announced the School’s strategic vision, Together for Good.
At age 22, aerospace engineer Eric Shaw worked on some of the world’s most powerful airplanes, yet learning to fly even the smallest one was out of reach. Just out of college, he could not afford civilian flight school and spent the next two years saving $12,000 to earn his private pilot’s license. Shaw knew there had to be a better, less expensive way to train pilots. Now a graduate student at the MIT Sloan School of Management’s Leaders for Global Operations (LGO) program, Shaw joined the MIT
At age 22, aerospace engineer Eric Shaw worked on some of the world’s most powerful airplanes, yet learning to fly even the smallest one was out of reach. Just out of college, he could not afford civilian flight school and spent the next two years saving $12,000 to earn his private pilot’s license. Shaw knew there had to be a better, less expensive way to train pilots.
Now a graduate student at the MIT Sloan School of Management’s Leaders for Global Operations (LGO) program, Shaw joined the MIT Department of Aeronautics and Astronautics’ (AeroAstro) Certificate in Aerospace Innovation program to turn a years-long rumination into a viable solution. Along with fellow graduate students Gretel Gonzalez and Shaan Jagani, Shaw proposed training aspiring pilots on electric and hybrid planes. This approach reduces flight school expenses by up to 34 percent while shrinking the industry’s carbon footprint.
The trio shared their plan to create the Aeroelectric Flight Academy at the certificate program’s signature Pitchfest event last spring. Equipped with a pitch deck and a business plan, the team impressed the judges, who awarded them the competition’s top prize of $10,000.
What began as a curiosity to test an idea has reshaped Shaw’s view of his industry.
“Aerospace and entrepreneurship initially seemed antithetical to me,” Shaw says. “It’s a hard sector to break into because the capital expenses are huge and a few big dogs have a lot of influence. Earning this certificate and talking face-to-face with folks who have overcome this seemingly impossible gap has filled me with confidence.”
Disruption by design
AeroAstro introduced the Certificate in Aerospace Innovation in 2021 after engaging in a strategic planning process to take full advantage of the research and ideas coming out of the department. The initiative is spearheaded by AeroAstro professors Olivier L. de Weck SM ʼ99, PhD ʼ01 and Zoltán S. Spakovszky SM ʼ99, PhD ʼ00, in partnership with the Martin Trust Center for MIT Entrepreneurship. Its creation recognizes the aerospace industry is at an inflection point. Major advancements in drone, satellite, and other technologies, coupled with an infusion of nongovernmental funding, have made it easier than ever to bring aerospace innovations to the marketplace.
“The landscape has radically shifted,” says Spakovszky, the Institute’s T. Wilson (1953) Professor in Aeronautics. “MIT students are responding to this change because startups are often the quickest path to impact.”
The certificate program has three requirements: coursework in both aerospace engineering and entrepreneurship, a speaker series primarily featuring MIT alumni and faculty, and hands-on entrepreneurship experience. In the latter, participants can enroll in the Trust Center’s StartMIT program and then compete in Pitchfest, which is modeled after the MIT $100K Entrepreneurship Competition. They can also join a summer incubator, such as the Trust Center’s MIT delta v or the Venture Exploration Program, run by the MIT Office of Innovation and the National Science Foundation’s Innovation Corps.
“At the end of the program, students will be able to look at a technical proposal and fairly quickly run some numbers and figure out if this innovation has market viability or if it’s completely utopian,” says de Weck, the Apollo Program Professor of Astronautics and associate department head of AeroAstro.
Since its inception, 46 people from the MIT community have participated and 13 have fulfilled the requirements of the two-year program to earn the certificate. The program’s fourth cohort is underway this fall with its largest enrollment yet, with 21 postdocs, graduate students, and undergraduate seniors across seven courses and programs at MIT.
A unicorn industry
When Eddie Obropta SM ʼ13, SM ʼ15 attended MIT, aerospace entrepreneurship meant working for SpaceX or Blue Origin. Yet he knew more was possible. He gave himself a crash course in entrepreneurship by competing in the MIT $100K Entrepreneurship Competition four times. Each year, his ideas became more refined and battle-tested by potential customers.
In his final entry in the competition, Obropta, along with MIT doctoral student Nikhil Vadhavkar and Forrest Meyen SM ’13 PhD ’17, proposed using drones to maximize crop yields. Their business, Raptor Maps, won. Today, Obropta serves as the co-founder and chief technology officer of Raptor Maps, which builds software to automate the operations and maintenance of solar farms using drones, robots, and artificial intelligence
While Obropta received support from AeroAstro and MIT's existing entrepreneurial ecosystem, the tech leader was excited when de Weck and Spakovszky shared their plans to launch the Certificate in Aerospace Innovation. Obropta currently serves on the program’s advisory board, has been a presenter at the speaker series, and has served as a mentor and judge for Pitchfest.
“While there are a lot of excellent entrepreneurship programs across the Institute, the aerospace industry is its own unique beast,” Obropta says. “Today’s aspiring founders are visionaries looking to build a spacefaring civilization, but they need specialized support in navigating complex multidisciplinary missions and heavy government involvement.”
Entrepreneurs are everywhere, not just at startups
While the certificate program will likely produce success stories like Raptor Maps, that is not the ultimate goal, say de Weck and Spakovszky. Thinking and acting like an entrepreneur — such as understanding market potential, dealing with failure, and building a deep professional network — are characteristics that benefit everyone, no matter their occupation.
Paul Cheek, executive director of the Trust Center who also teaches a course in the certificate program, agrees.
“At its core, entrepreneurship is a mindset and a skill set; it’s about moving the needle forward for maximum impact,” Cheek says. “A lot of organizations, including large corporations, nonprofits, and the government, can benefit from that type of thinking.”
That form of entrepreneurship resonates with the Aeroelectric Flight Academy team. Although they are meeting with potential investors and looking to scale their business, all three plan to pursue their first passions: Jagani hopes to be an astronaut, Shaw would like to be an executive at one of the “big dog” aerospace companies, and Gonzalez wants to work for the Mexican Space Agency.
Gonzalez, who is on track to earn her certificate in 2025, says she is especially grateful for the people she met through the program.
“I didn’t know an aerospace entrepreneurship community even existed when I began the program,” Gonzalez says. “It’s here and it’s filled with very dedicated and generous people who have shared insights with me that I don’t think I would have learned anywhere else.”
Nation & World
What’s ahead for U.S. foreign policy in ‘Trump 2.0’?
Peter Baker and Susan Glasser. Photo by Grace DuVal
Christina Pazzanese
Harvard Staff Writer
November 15, 2024
4 min read
Peter Baker and Susan Glasser predict push to end Ukraine war on Russia’s terms, instability for NATO
President-elect Donald Trump is moving swiftly to announce Cabinet and other appointments for
What’s ahead for U.S. foreign policy in ‘Trump 2.0’?
Christina Pazzanese
Harvard Staff Writer
4 min read
Peter Baker and Susan Glasser predict push to end Ukraine war on Russia’s terms, instability for NATO
President-elect Donald Trump is moving swiftly to announce Cabinet and other appointments for a second term in office, which many observers expect to pick up where he left off in January 2021 on major policy issues like immigration, trade, and foreign relations.
What will be different, say veteran Washington journalists Susan Glasser ’90, and Peter Baker, is the speed at which Trump will move to advance his agenda, with a likely boost from a Republican majority in Congress.
“Trump 2.0 is Trump on steroids,” Baker, senior White House correspondent at The New York Times, told moderator Yevgenia Albats, Ph.D. ’04, a Russian journalist and political scientist. The discussion on Tuesday with Baker and Glasser, a staff writer for The New Yorker, examined what U.S. policy with Russia, China, and the European Union may look like during a second Trump administration.
The pair, who are married, served in Moscow as co-bureau chiefs for The Washington Post from 2001 to 2004, and have written several books together, including “Kremlin Rising: Vladimir Putin’s Russia and the End of Revolution” in 2005 and “The Divider: Trump in the White House 2017-2021” in 2022.
Unlike in 2016, when he ran as a celebrity businessman who wanted to shake up Washington, Trump will return to the White House in January having run on “an explicit campaign of revenge and retribution,” according to Glasser, and intending to take care of what he sees as “unfinished business,” namely to “fundamentally reorient” U.S. foreign policy to his own more isolationist view of the country’s role in the world.
Trump has more experience now in how to use the levers of presidential power. And his loyalist picks for secretaries of state and defense and national security adviser — Sen. Marco Rubio, Army veteran and Fox TV host Pete Hegseth, M.P.P. ’13, and Rep. Mike Waltz — lack deep experience in foreign policy and will likely do little to restrain Trump’s plans, unlike their counterparts in Trump’s first term, they said.
“If you look [at] who’s in the room making decisions right now, there is no dissent,” Baker noted.
The fate of Ukraine is likely to be among the first matters Trump takes up.
The incoming president, who has reportedly engaged in back-channel talks with Putin, made a campaign promise to end the Ukraine war quickly. He is almost certain to cut off U.S. aid to Ukraine and try to broker a deal that will favor Russia, the pair told Albats, editor in chief of The New Times, an independent Russian language news outlet, and a visiting scholar at the Davis Center for Russian and Eurasian Studies at Harvard.
NATO’s fate in a second Trump term is unclear. As the president-elect demonstrated in his first term, “He has no interest and no commitment whatsoever to defend, frankly, anybody, but especially the Eastern European countries,” said Baker.
Even without a formal withdrawal by the U.S., as Trump repeatedly threatened during his first term, NATO is already weaker than it was before Nov. 5, he said.
“If you’re an adversary of NATO, Article 5 [which calls for the nations to defend one another if attacked] is meaningless, because if it’s a conditional thing, depending on the mood of the president of the United States as opposed to a solid commitment, it’s a dead letter,” said Baker.
“He has, just by getting elected, undercut NATO in a way that it has not been undercut” since its beginnings after World War II amid concerns over the rise of the Soviet Union as a nuclear power, he said.
Arts & Culture
The very model of a modern major initiative
On the nights they attend A.R.T. performances, Lavine Learning Lab students welcome audiences to the Loeb Drama Center.Photo by Lauren Miller
November 15, 2024
5 min read
A.R.T. and Lavine Learning Lab aim to create a space for intergenerational dialogue, deepen student engagement with theater
Supporting student engagement in live theater as
A.R.T. and Lavine Learning Lab aim to create a space for intergenerational dialogue, deepen student engagement with theater
Supporting student engagement in live theater as it fosters lasting relationships between the two is the idea behind the American Repertory Theater’s Lavine Learning Lab. The new student initiative will, among other exercises, bring participating public high school students to an evening performance of every show in the company’s season.
Rooted in A.R.T.’s core values of inquiry and collaboration, the Lavine Learning Lab uses A.R.T. productions as the foundation for student workshops that bridge the arts, humanities, and social and emotional learning, fostering lasting relationships between the theater and its young audience.
“The theater is where we develop our muscles for inquiry, empathy, and debate,” said Artistic Director Diane Paulus ’88. “The Lavine Learning Lab will be a gymnasium where high school students will come to exercise their humanity so they can become the most impactful citizens and participants in our society.”
For each production, students participate in an introductory in-school workshop centered around the production’s “Essential Questions”; a pre-show workshop at A.R.T., held alongside a second Learning Lab school, exploring one of the production’s themes or elements, followed by dinner and a performance; and a post-show, in-school student-led workshop for students to unpack their own perspectives and those of others.
In addition, two educators from each participating school join a Professional Learning Community in which A.R.T. facilitates ongoing collaborative learning and provides professional development.
An important aspect of the program is Learning Lab students will attend evening performances of every show in A.R.T.’s season — instead of morning matinees traditionally designated for school groups. Students will sit in groups of two to four, alongside the general evening audience.
“When we attend a performance, we aren’t impacted only by what we see onstage, but also by our fellow audience members,” said A.R.T. Associate Artistic Director Dayron J. Miles. “The lab’s students will diversify A.R.T.’s audience in multiple dimensions, turning our theater into a space for intergenerational dialogue among people with different lived experiences and perspectives. Empathy is a necessary tool for responsible democratic participation, and that’s what we can cultivate with this model.”
Evening attendance also builds familiarity with theatergoing and sense of belonging at the theater to cultivate a culture of lifelong theatergoing. To increase accessibility by removing common barriers, A.R.T. provides transportation between the schools and the theater and a pre-show dinner onsite.
The Lavine Learning Lab is supported by a $5 million gift from the Crimson Lion / Lavine Family Foundation, which was founded by Bain Capital Chair Jonathan Lavine, M.B.A. ’92, and Jeannie Lavine ’88, M.B.A. ’92, to support nonprofit organizations focused on leveling the playing field for individuals and families.
“We’ve been struck by A.R.T.’s commitment to expanding access to theater,” said Jeannie and Jonathan Lavine in a statement. “We are delighted to play a part in engaging Boston’s students and teachers in the essential questions sparked by A.R.T.’s world-class programming and in supporting A.R.T., whose work inspires people all throughout our city and this country.”
The Learning Lab exemplifies the type of community-centered, accessible programming A.R.T. will offer from its new home, the David E. and Stacey L. Goel Center for Creativity & Performance. Currently under construction at 175 N. Harvard St. in the Allston neighborhood of Boston, the center is expected to be completed in the fall of 2026.
A.R.T. facilitated a pilot with six public high schools during the 2023-2024 school year to develop the current model.
“I feel like a lot of my analytical skills have been reinforced and retaught in the Learning Lab, but I’ve also taken the vulnerability that I feel when I’m in the lab and applied it to other parts of my life,” said Malden High School student and pilot and Learning Lab participant Addison McWayne. “This experience has provided me with opportunities to speak up for myself and to share my opinion, which has made me a stronger and more confident person.”
“The lab is one of the ways that A.R.T. shares the resources of Harvard University with our community, but the A.R.T. community gains so much, too,” said Kelvin Dinkins Jr., executive director of the A.R.T. “The students bring their anticipation and excitement, which translates into a galvanizing energy on the sidewalk, in our lobbies, and in the theater itself that enhances the experience for everyone. Thanks to this incredible support from the Crimson Lion / Lavine Family Foundation, A.R.T. is positioned to bring our mission into public high schools across Boston for years to come.”
“When the Lavine Learning Lab works in Boston, we hope it will be a model for other cities, because A.R.T. has led the way in so many areas, and A.R.T. can help lead the way in providing this kind of access and inspiration to students all over the country,” said the Lavines.
To fend off the worst impacts of climate change, “we have to decarbonize, and do it even faster,” said William H. Green, director of the MIT Energy Initiative (MITEI) and Hoyt C. Hottel Professor, MIT Department of Chemical Engineering, at MITEI’s Annual Research Conference.“But how the heck do we actually achieve this goal when the United States is in the middle of a divisive election campaign, and globally, we’re facing all kinds of geopolitical conflicts, trade protectionism, weather disaster
To fend off the worst impacts of climate change, “we have to decarbonize, and do it even faster,” said William H. Green, director of the MIT Energy Initiative (MITEI) and Hoyt C. Hottel Professor, MIT Department of Chemical Engineering, at MITEI’s Annual Research Conference.
“But how the heck do we actually achieve this goal when the United States is in the middle of a divisive election campaign, and globally, we’re facing all kinds of geopolitical conflicts, trade protectionism, weather disasters, increasing demand from developing countries building a middle class, and data centers in countries like the U.S.?”
Researchers, government officials, and business leaders convened in Cambridge, Massachusetts, Sept. 25-26 to wrestle with this vexing question at the conference that was themed, “A durable energy transition: How to stay on track in the face of increasing demand and unpredictable obstacles.”
“In this room we have a lot of power,” said Green, “if we work together, convey to all of society what we see as real pathways and policies to solve problems, and take collective action.”
The critical role of consensus-building in driving the energy transition arose repeatedly in conference sessions, whether the topic involved developing and adopting new technologies, constructing and siting infrastructure, drafting and passing vital energy policies, or attracting and retaining a skilled workforce.
Resolving conflicts
There is “blowback and a social cost” in transitioning away from fossil fuels, said Stephen Ansolabehere, the Frank G. Thompson Professor of Government at Harvard University, in a panel on the social barriers to decarbonization. “Companies need to engage differently and recognize the rights of communities,” he said.
Nora DeDontney, director of development at Vineyard Offshore, described her company’s two years of outreach and negotiations to bring large cables from ocean-based wind turbines onshore.
“Our motto is, 'community first,'” she said. Her company works to mitigate any impacts towns might feel because of offshore wind infrastructure construction with projects, such as sewer upgrades; provides workforce training to Tribal Nations; and lays out wind turbines in a manner that provides safe and reliable areas for local fisheries.
Elsa A. Olivetti, professor in the Department of Materials Science and Engineering at MIT and the lead of the Decarbonization Mission of MIT’s new Climate Project, discussed the urgent need for rapid scale-up of mineral extraction. “Estimates indicate that to electrify the vehicle fleet by 2050, about six new large copper mines need to come on line each year,” she said. To meet the demand for metals in the United States means pushing into Indigenous lands and environmentally sensitive habitats. “The timeline of permitting is not aligned with the temporal acceleration needed,” she said.
Larry Susskind, the Ford Professor of Urban and Environmental Planning in the MIT Department of Urban Studies and Planning, is trying to resolve such tensions with universities playing the role of mediators. He is creating renewable energy clinics where students train to participate in emerging disputes over siting. “Talk to people before decisions are made, conduct joint fact finding, so that facilities reduce harms and share the benefits,” he said.
Clean energy boom and pressure
A relatively recent and unforeseen increase in demand for energy comes from data centers, which are being built by large technology companies for new offerings, such as artificial intelligence.
“General energy demand was flat for 20 years — and now, boom,” said Sean James, Microsoft’s senior director of data center research. “It caught utilities flatfooted.” With the expansion of AI, the rush to provision data centers with upwards of 35 gigawatts of new (and mainly renewable) power in the near future, intensifies pressure on big companies to balance the concerns of stakeholders across multiple domains. Google is pursuing 24/7 carbon-free energy by 2030, said Devon Swezey, the company’s senior manager for global energy and climate.
“We’re pursuing this by purchasing more and different types of clean energy locally, and accelerating technological innovation such as next-generation geothermal projects,” he said. Pedro Gómez Lopez, strategy and development director, Ferrovial Digital, which designs and constructs data centers, incorporates renewable energy into their projects, which contributes to decarbonization goals and benefits to locales where they are sited. “We can create a new supply of power, taking the heat generated by a data center to residences or industries in neighborhoods through District Heating initiatives,” he said.
The Inflation Reduction Act and other legislation has ramped up employment opportunities in clean energy nationwide, touching every region, including those most tied to fossil fuels. “At the start of 2024 there were about 3.5 million clean energy jobs, with 'red' states showing the fastest growth in clean energy jobs,” said David S. Miller, managing partner at Clean Energy Ventures. “The majority (58 percent) of new jobs in energy are now in clean energy — that transition has happened. And one-in-16 new jobs nationwide were in clean energy, with clean energy jobs growing more than three times faster than job growth economy-wide”
In this rapid expansion, the U.S. Department of Energy (DoE) is prioritizing economically marginalized places, according to Zoe Lipman, lead for good jobs and labor standards in the Office of Energy Jobs at the DoE. “The community benefit process is integrated into our funding,” she said. “We are creating the foundation of a virtuous circle,” encouraging benefits to flow to disadvantaged and energy communities, spurring workforce training partnerships, and promoting well-paid union jobs. “These policies incentivize proactive community and labor engagement, and deliver community benefits, both of which are key to building support for technological change.”
Hydrogen opportunity and challenge
While engagement with stakeholders helps clear the path for implementation of technology and the spread of infrastructure, there remain enormous policy, scientific, and engineering challenges to solve, said multiple conference participants. In a “fireside chat,” Prasanna V. Joshi, vice president of low-carbon-solutions technology at ExxonMobil, and Ernest J. Moniz, professor of physics and special advisor to the president at MIT, discussed efforts to replace natural gas and coal with zero-carbon hydrogen in order to reduce greenhouse gas emissions in such major industries as steel and fertilizer manufacturing.
“We have gone into an era of industrial policy,” said Moniz, citing a new DoE program offering incentives to generate demand for hydrogen — more costly than conventional fossil fuels — in end-use applications. “We are going to have to transition from our current approach, which I would call carrots-and-twigs, to ultimately, carrots-and-sticks,” Moniz warned, in order to create “a self-sustaining, major, scalable, affordable hydrogen economy.”
To achieve net zero emissions by 2050, ExxonMobil intends to use carbon capture and sequestration in natural gas-based hydrogen and ammonia production. Ammonia can also serve as a zero-carbon fuel. Industry is exploring burning ammonia directly in coal-fired power plants to extend the hydrogen value chain. But there are challenges. “How do you burn 100 percent ammonia?”, asked Joshi. “That's one of the key technology breakthroughs that's needed.” Joshi believes that collaboration with MIT’s “ecosystem of breakthrough innovation” will be essential to breaking logjams around the hydrogen and ammonia-based industries.
MIT ingenuity essential
The energy transition is placing very different demands on different regions around the world. Take India, where today per capita power consumption is one of the lowest. But Indians “are an aspirational people … and with increasing urbanization and industrial activity, the growth in power demand is expected to triple by 2050,” said Praveer Sinha, CEO and managing director of the Tata Power Co. Ltd., in his keynote speech. For that nation, which currently relies on coal, the move to clean energy means bringing another 300 gigawatts of zero-carbon capacity online in the next five years. Sinha sees this power coming from wind, solar, and hydro, supplemented by nuclear energy.
“India plans to triple nuclear power generation capacity by 2032, and is focusing on advancing small modular reactors,” said Sinha. “The country also needs the rapid deployment of storage solutions to firm up the intermittent power.” The goal is to provide reliable electricity 24/7 to a population living both in large cities and in geographically remote villages, with the help of long-range transmission lines and local microgrids. “India’s energy transition will require innovative and affordable technology solutions, and there is no better place to go than MIT, where you have the best brains, startups, and technology,” he said.
These assets were on full display at the conference. Among them a cluster of young businesses, including:
the MIT spinout Form Energy, which has developed a 100-hour iron battery as a backstop to renewable energy sources in case of multi-day interruptions;
startup Noya that aims for direct air capture of atmospheric CO2 using carbon-based materials;
the firm Active Surfaces, with a lightweight material for putting solar photovoltaics in previously inaccessible places;
Copernic Catalysts, with new chemistry for making ammonia and sustainable aviation fuel far more inexpensively than current processes; and
Sesame Sustainability, a software platform spun out of MITEI that gives industries a full financial analysis of the costs and benefits of decarbonization.
The pipeline of research talent extended into the undergraduate ranks, with a conference “slam” competition showcasing students’ summer research projects in areas from carbon capture using enzymes to 3D design for the coils used in fusion energy confinement.
“MIT students like me are looking to be the next generation of energy leaders, looking for careers where we can apply our engineering skills to tackle exciting climate problems and make a tangible impact,” said Trent Lee, a junior in mechanical engineering researching improvements in lithium-ion energy storage. “We are stoked by the energy transition, because it’s not just the future, but our chance to build it.”
A team of researchers from the UK and Australia analysed charcoal and pollen contained in ancient mud to determine how Aboriginal Tasmanians shaped their surroundings. This is the earliest record of humans using fire to shape the Tasmanian environment.
Early human migrations from Africa to the southern part of the globe were well underway during the early part of the last ice age – humans reached northern Australia by around 65,000 years ago. When the first Palawa/Pakana (Tasmanian Indigenous)
A team of researchers from the UK and Australia analysed charcoal and pollen contained in ancient mud to determine how Aboriginal Tasmanians shaped their surroundings. This is the earliest record of humans using fire to shape the Tasmanian environment.
Early human migrations from Africa to the southern part of the globe were well underway during the early part of the last ice age – humans reached northern Australia by around 65,000 years ago. When the first Palawa/Pakana (Tasmanian Indigenous) communities eventually reached Tasmania (known to the Palawa people as Lutruwita), it was the furthest south humans had ever settled.
These early Aboriginal communities used fire to penetrate and modify dense, wet forest for their own use – as indicated by a sudden increase in charcoal accumulated in ancient mud 41,600 years ago.
The researchers say their results, reported in the journal Science Advances, could not only help us understand how humans have been shaping the Earth’s environment for tens of thousands of years, but also help understand the long-term Aboriginal-landscape connection, which is vital for landscape management in Australia today.
Tasmania currently lies about 240 kilometres off the southeast Australian coast, separated from the Australian mainland by the Bass Strait. However, during the last ice age, Australia and Tasmania were connected by a huge land bridge, allowing people to reach Tasmania on foot. The land bridge remained until about 8,000 years ago, after the end of the last ice age, when rising sea levels eventually cut Tasmania off from the Australian mainland.
“Australia is home to the world’s oldest Indigenous culture, which has endured for over 50,000 years,” said Dr Matthew Adeleye from Cambridge’s Department of Geography, the study’s lead author. “Earlier studies have shown that Aboriginal communities on the Australian mainland used fire to shape their habitats, but we haven’t had similarly detailed environmental records for Tasmania.”
The researchers studied ancient mud taken from islands in the Bass Strait, which is part of Tasmania today, but would have been part of the land bridge connecting Australia and Tasmania during the last ice age. Due to low sea levels at the time, Palawa/Pakana communities were able to migrate from the Australian mainland.
Analysis of the ancient mud showed a sudden increase in charcoal around 41,600 years ago, followed by a major change in vegetation about 40,000 years ago, as indicated by different types of pollen in the mud.
“This suggests these early inhabitants were clearing forests by burning them, in order to create open spaces for subsistence and perhaps cultural activities,” said Adeleye. “Fire is an important tool, and it would have been used to promote the type of vegetation or landscape that was important to them.”
The researchers say that humans likely learned to use fire to clear and manage forests during their migration across the glacial landscape of Sahul – a palaeocontinent that encompassed modern-day Australia, Tasmania, New Guinea and eastern Indonesia – as part of the extensive migration out of Africa.
“As natural habitats adapted to these controlled burnings, we see the expansion of fire-adapted species such as Eucalyptus, primarily on the wetter, eastern side of the Bass Strait islands,” said Adeleye.
Burning practices are still practiced today by Aboriginal communities in Australia, including for landscape management and cultural activities. However, using this type of burning, known as cultural burning, for managing severe wildfires in Australia remains contentious. The researchers say understanding this ancient land management practice could help define and restore pre-colonial landscapes.
“These early Tasmanian communities were the island’s first land managers,” said Adeleye. “If we’re going to protect Tasmanian and Australian landscapes for future generations, it’s important that we listen to and learn from Indigenous communities who are calling for a greater role in helping to manage Australian landscapes into the future.”
The research was supported in part by the Australian Research Council.
Some of the first human beings to arrive in Tasmania, over 41,000 years ago, used fire to shape and manage the landscape, about 2,000 years earlier than previously thought.
A team of researchers from the UK and Australia analysed charcoal and pollen contained in ancient mud to determine how Aboriginal Tasmanians shaped their surroundings. This is the earliest record of humans using fire to shape the Tasmanian environment.
Early human migrations from Africa to the southern part of the globe were well underway during the early part of the last ice age – humans reached northern Australia by around 65,000 years ago. When the first Palawa/Pakana (Tasmanian Indigenous)
A team of researchers from the UK and Australia analysed charcoal and pollen contained in ancient mud to determine how Aboriginal Tasmanians shaped their surroundings. This is the earliest record of humans using fire to shape the Tasmanian environment.
Early human migrations from Africa to the southern part of the globe were well underway during the early part of the last ice age – humans reached northern Australia by around 65,000 years ago. When the first Palawa/Pakana (Tasmanian Indigenous) communities eventually reached Tasmania (known to the Palawa people as Lutruwita), it was the furthest south humans had ever settled.
These early Aboriginal communities used fire to penetrate and modify dense, wet forest for their own use – as indicated by a sudden increase in charcoal accumulated in ancient mud 41,600 years ago.
The researchers say their results, reported in the journal Science Advances, could not only help us understand how humans have been shaping the Earth’s environment for tens of thousands of years, but also help understand the long-term Aboriginal-landscape connection, which is vital for landscape management in Australia today.
Tasmania currently lies about 240 kilometres off the southeast Australian coast, separated from the Australian mainland by the Bass Strait. However, during the last ice age, Australia and Tasmania were connected by a huge land bridge, allowing people to reach Tasmania on foot. The land bridge remained until about 8,000 years ago, after the end of the last ice age, when rising sea levels eventually cut Tasmania off from the Australian mainland.
“Australia is home to the world’s oldest Indigenous culture, which has endured for over 50,000 years,” said Dr Matthew Adeleye from Cambridge’s Department of Geography, the study’s lead author. “Earlier studies have shown that Aboriginal communities on the Australian mainland used fire to shape their habitats, but we haven’t had similarly detailed environmental records for Tasmania.”
The researchers studied ancient mud taken from islands in the Bass Strait, which is part of Tasmania today, but would have been part of the land bridge connecting Australia and Tasmania during the last ice age. Due to low sea levels at the time, Palawa/Pakana communities were able to migrate from the Australian mainland.
Analysis of the ancient mud showed a sudden increase in charcoal around 41,600 years ago, followed by a major change in vegetation about 40,000 years ago, as indicated by different types of pollen in the mud.
“This suggests these early inhabitants were clearing forests by burning them, in order to create open spaces for subsistence and perhaps cultural activities,” said Adeleye. “Fire is an important tool, and it would have been used to promote the type of vegetation or landscape that was important to them.”
The researchers say that humans likely learned to use fire to clear and manage forests during their migration across the glacial landscape of Sahul – a palaeocontinent that encompassed modern-day Australia, Tasmania, New Guinea and eastern Indonesia – as part of the extensive migration out of Africa.
“As natural habitats adapted to these controlled burnings, we see the expansion of fire-adapted species such as Eucalyptus, primarily on the wetter, eastern side of the Bass Strait islands,” said Adeleye.
Burning practices are still practiced today by Aboriginal communities in Australia, including for landscape management and cultural activities. However, using this type of burning, known as cultural burning, for managing severe wildfires in Australia remains contentious. The researchers say understanding this ancient land management practice could help define and restore pre-colonial landscapes.
“These early Tasmanian communities were the island’s first land managers,” said Adeleye. “If we’re going to protect Tasmanian and Australian landscapes for future generations, it’s important that we listen to and learn from Indigenous communities who are calling for a greater role in helping to manage Australian landscapes into the future.”
The research was supported in part by the Australian Research Council.
Some of the first human beings to arrive in Tasmania, over 41,000 years ago, used fire to shape and manage the landscape, about 2,000 years earlier than previously thought.
An initial £10 million donation will be used to support education and research into areas including the conservation of biodiversity, enhancing business sustainability, and the restoration of natural habitats in Brazil and beyond. The agreement will establish the Suzano Scholars Fund, a perpetual endowment at Jesus College to fund Brazilian nationals studying for a postgraduate degree at the University of Cambridge connected to the environment, ecology and conservation, educating the next genera
An initial £10 million donation will be used to support education and research into areas including the conservation of biodiversity, enhancing business sustainability, and the restoration of natural habitats in Brazil and beyond. The agreement will establish the Suzano Scholars Fund, a perpetual endowment at Jesus College to fund Brazilian nationals studying for a postgraduate degree at the University of Cambridge connected to the environment, ecology and conservation, educating the next generation of sustainability experts and leaders. Funding will also be provided to academics based at the Conservation Research Institute to undertake research projects exploring the interaction between human and natural systems in areas such as biodiversity, climate change, water resource management, and ecosystem restoration. Read more about this new initiative here
Suzano, one the world’s largest producers of bio-based raw materials, based in São Paulo, Brazil, establishes a long-term initiative with Jesus College and the University of Cambridge.
This visionary initiative will help to build strong links between the University of Cambridge and Brazil
Weill Cornell Medicine researchers have determined the full-length structure and function of a blood pressure-regulating hormone receptor, which may enable better drug targeting of the receptor for diseases such as hypertension and heart failure.
Weill Cornell Medicine researchers have determined the full-length structure and function of a blood pressure-regulating hormone receptor, which may enable better drug targeting of the receptor for diseases such as hypertension and heart failure.
This year’s Challenge, held at the iconic Somerset House in London, saw the Oxford and Cambridge University Boat Clubs come together in celebration of one of British sport’s most enduring rivalries. The event traditionally sees the Presidents representing the losing teams of the previous year’s races formally challenge those from the winning teams, marking the renewal of an intense competition which stretches back nearly 200 years.
Those in attendance gathered with anticipation to witness Oxfor
This year’s Challenge, held at the iconic Somerset House in London, saw the Oxford and Cambridge University Boat Clubs come together in celebration of one of British sport’s most enduring rivalries. The event traditionally sees the Presidents representing the losing teams of the previous year’s races formally challenge those from the winning teams, marking the renewal of an intense competition which stretches back nearly 200 years.
Those in attendance gathered with anticipation to witness Oxford Presidents Tom Mackintosh and Annie Anezakis challenge Cambridge Presidents Luca Ferraro and Lucy Havard. The pairs faced off before shaking hands on stage in front of the coveted men’s and women’s trophies.
The Umpires were confirmed as Sarah Winckless MBE and Sir Matthew Pinsent, for the Men’s and Women’s races respectively. Winckless becomes the first woman to umpire the Men’s Race on The Championship Course.
The Boat Race will take place on Sunday 13 April, with The 79th Women’s Boat Race to be followed shortly after by The 170th Men’s Boat Race. Two hundred thousand spectators are expected to line the banks of the River Thames to watch the event - which is free to attend and broadcast live on the BBC - while millions more are expected to watch globally.
The Boat Race is made up of six races and in 2024, Cambridge won five. The make-up of the squads will be more diverse than ever in 2025, with 157 student rowers spanning 18 different nationalities from countries such as Nigeria, Sweden, Australia, New Zealand, Switzerland, Germany, Italy, France, Sri Lanka and China. Oxford’s Luisa Fernandez Chirino, should she be selected to face Cambridge, would be the first Mexican woman to compete at The Boat Race.
There will also be six Olympians within the squads. For Cambridge, this includes two-time Olympian Claire Collins, alongside reserve athlete for the 2024 British Olympic team, James Robson. For Oxford, this includes Paris men’s eight bronze medallist Nick Rusher, Paris women’s eight bronze medallist Heidi Long, Tokyo men’s eight gold medallist Tom Mackintosh, as well as Paris Olympian Nicholas Kohl. Meanwhile, Harry Brightmore, Paris gold medallist in the men’s eight, has joined Oxford as an assistant coach.
Asked by host, Olympic champion and four-time Boat Race winner Constantine Louloudis MBE, if this year's race would be "rinse and repeat" for Cambridge, Women's President, Lucy Havard, who is pursuing a PhD in Early Modern History at Gonville & Caius College, said: "Absolutely not - it's never the same, every year it's new people and Boat Race wins don't come easily. Everyone is gunning for it, everyone is putting so much time and effort in."
Luca Ferraro, who is taking an MPhil in History of Art and Architecture at Peterhouse, was asked about how it felt to take on the responsibility of Men's President. "I would be lying if I didn't say it didn't add a certain extra layer... racing an opponent you don't really get to meet at full strength until next year," he said. "You have the odd moment of thinking are we doing the right things, are we going fast enough and no-one feels that quite as keenly as the President, but we are surrounded by such a great team and it is so rewarding to have that extra level of responsibility."
First raced by crews from Oxford and Cambridge University in 1829, The Boat Race is now one of the world’s oldest and most famous amateur sporting events, offering an unrivalled educational experience to the student athletes who take part. The famous Championship Course stretches over 4.25 miles of tidal Thames in West London between Putney and Mortlake.
The countdown to the 2025 Boat Race is officially underway, with the annual Presidents’ Challenge ushering in another season of competition between the universities of Oxford and Cambridge.
Oxford Presidents Tom Mackintosh and Annie Anezakis challenge Cambridge Presidents Luca Ferraro and Lucy Havard
J-PAL North America recently selected government partners for the 2024-25 Leveraging Evaluation and Evidence for Equitable Recovery (LEVER) Evaluation Incubator cohort. Selected collaborators will receive funding and technical assistance to develop or launch a randomized evaluation for one of their programs. These collaborations represent jurisdictions across the United States and demonstrate the growing enthusiasm for evidence-based policymaking.Launched in 2023, LEVER is a joint venture betwee
J-PAL North America recently selected government partners for the 2024-25 Leveraging Evaluation and Evidence for Equitable Recovery (LEVER) Evaluation Incubator cohort. Selected collaborators will receive funding and technical assistance to develop or launch a randomized evaluation for one of their programs. These collaborations represent jurisdictions across the United States and demonstrate the growing enthusiasm for evidence-based policymaking.
Launched in 2023, LEVER is a joint venture between J-PAL North America and Results for America. Through the Evaluation Incubator, trainings, and other program offerings, LEVER seeks to address the barriers many state and local governments face around finding and generating evidence to inform program design. LEVER offers government leaders the opportunity to learn best practices for policy evaluations and how to integrate evidence into decision-making. Since the program’s inception, more than 80 government jurisdictions have participated in LEVER offerings.
J-PAL North America’s Evaluation Incubator helps collaborators turn policy-relevant research questions into well-designed randomized evaluations, generating rigorous evidence to inform pressing programmatic and policy decisions. The program also aims to build a culture of evidence use and give government partners the tools to continue generating and utilizing evidence in their day-to-day operations.
In addition to funding and technical assistance, the selected state and local government collaborators will be connected with researchers from J-PAL’s network to help advance their evaluation ideas. Evaluation support will also be centered on community-engaged research practices, which emphasize collaborating with and learning from the groups most affected by the program being evaluated.
Evaluation Incubator selected projects
Pierce County Human Services (PCHS) in the state of Washington will evaluate two programs as part of the Evaluation Incubator. The first will examine how extending stays in a fentanyl detox program affects the successful completion of inpatient treatment and hospital utilization for individuals. “PCHS is interested in evaluating longer fentanyl detox stays to inform our funding decisions, streamline our resource utilization, and encourage additional financial commitments to address the unmet needs of individuals dealing with opioid use disorder,” says Trish Crocker, grant coordinator.
The second PCHS program will evaluate the impact of providing medication and outreach services via a mobile distribution unit to individuals with opioid use disorders on program take-up and substance usage. Margo Burnison, a behavioral health manager with PCHS, says that the team is “thrilled to be partnering with J-PAL North America to dive deep into the data to inform our elected leaders on the best way to utilize available resources.”
The City of Los Angeles Youth Development Department (YDD) seeks to evaluate a research-informed program: Student Engagement, Exploration, and Development in STEM (SEEDS). This intergenerational STEM mentorship program supports underrepresented middle school and college students in STEM by providing culturally responsive mentorship. The program seeks to foster these students’ STEM identity and degree attainment in higher education. YDD has been working with researchers at the University of Southern California to measure the SEEDS program’s impact, but is interested in developing a randomized evaluation to generate further evidence. Darnell Cole, professor and co-director of the Research Center for Education, Identity and Social Justice, shares his excitement about the collaboration with J-PAL: “We welcome the opportunity to measure the impact of the SEEDS program on our students’ educational experience. Rigorously testing the SEEDS program will help us improve support for STEM students, ultimately enhancing their persistence and success.”
The Fort Wayne Police Department’s Hope and Recovery Team in Indiana will evaluate the impact of two programs that connect social workers with people who have experienced an overdose, or who have a mental health illness, to treatment and resources. “We believe we are on the right track in the work we are doing with the crisis intervention social worker and the recovery coach, but having an outside evaluation of both programs would be extremely helpful in understanding whether and what aspects of these programs are most effective,” says Police Captain Kevin Hunter.
The County of San Diego’s Office of Evaluation, Performance and Analytics, and Planning & Development Services will engage with J-PAL staff to explore evaluation opportunities for two programs that are a part of the county’s Climate Action Plan. The Equity-Driven Tree Planting Program seeks to increase tree canopy coverage, and the Climate Smart Land Stewardship Program will encourage climate-smart agricultural practices. Ricardo Basurto-Davila, chief evaluation officer, says that “the county is dedicated to evidence-based policymaking and taking decisive action against climate change. The work with J-PAL will support us in combining these commitments to maximize the effectiveness in decreasing emissions through these programs.”
J-PAL North America looks forward to working with the selected collaborators in the coming months to learn more about these promising programs, clarify our partner’s evidence goals, and design randomized evaluations to measure their impact.
J-PAL North America recently selected government partners for the 2024-25 Leveraging Evaluation and Evidence for Equitable Recovery (LEVER) Evaluation Incubator cohort. Selected collaborators will receive funding and technical assistance to develop or launch a randomized evaluation for one of their programs. These collaborations represent jurisdictions across the United States and demonstrate the growing enthusiasm for evidence-based policymaking.Launched in 2023, LEVER is a joint venture betwee
J-PAL North America recently selected government partners for the 2024-25 Leveraging Evaluation and Evidence for Equitable Recovery (LEVER) Evaluation Incubator cohort. Selected collaborators will receive funding and technical assistance to develop or launch a randomized evaluation for one of their programs. These collaborations represent jurisdictions across the United States and demonstrate the growing enthusiasm for evidence-based policymaking.
Launched in 2023, LEVER is a joint venture between J-PAL North America and Results for America. Through the Evaluation Incubator, trainings, and other program offerings, LEVER seeks to address the barriers many state and local governments face around finding and generating evidence to inform program design. LEVER offers government leaders the opportunity to learn best practices for policy evaluations and how to integrate evidence into decision-making. Since the program’s inception, more than 80 government jurisdictions have participated in LEVER offerings.
J-PAL North America’s Evaluation Incubator helps collaborators turn policy-relevant research questions into well-designed randomized evaluations, generating rigorous evidence to inform pressing programmatic and policy decisions. The program also aims to build a culture of evidence use and give government partners the tools to continue generating and utilizing evidence in their day-to-day operations.
In addition to funding and technical assistance, the selected state and local government collaborators will be connected with researchers from J-PAL’s network to help advance their evaluation ideas. Evaluation support will also be centered on community-engaged research practices, which emphasize collaborating with and learning from the groups most affected by the program being evaluated.
Evaluation Incubator selected projects
Pierce County Human Services (PCHS) in the state of Washington will evaluate two programs as part of the Evaluation Incubator. The first will examine how extending stays in a fentanyl detox program affects the successful completion of inpatient treatment and hospital utilization for individuals. “PCHS is interested in evaluating longer fentanyl detox stays to inform our funding decisions, streamline our resource utilization, and encourage additional financial commitments to address the unmet needs of individuals dealing with opioid use disorder,” says Trish Crocker, grant coordinator.
The second PCHS program will evaluate the impact of providing medication and outreach services via a mobile distribution unit to individuals with opioid use disorders on program take-up and substance usage. Margo Burnison, a behavioral health manager with PCHS, says that the team is “thrilled to be partnering with J-PAL North America to dive deep into the data to inform our elected leaders on the best way to utilize available resources.”
The City of Los Angeles Youth Development Department (YDD) seeks to evaluate a research-informed program: Student Engagement, Exploration, and Development in STEM (SEEDS). This intergenerational STEM mentorship program supports underrepresented middle school and college students in STEM by providing culturally responsive mentorship. The program seeks to foster these students’ STEM identity and degree attainment in higher education. YDD has been working with researchers at the University of Southern California to measure the SEEDS program’s impact, but is interested in developing a randomized evaluation to generate further evidence. Darnell Cole, professor and co-director of the Research Center for Education, Identity and Social Justice, shares his excitement about the collaboration with J-PAL: “We welcome the opportunity to measure the impact of the SEEDS program on our students’ educational experience. Rigorously testing the SEEDS program will help us improve support for STEM students, ultimately enhancing their persistence and success.”
The Fort Wayne Police Department’s Hope and Recovery Team in Indiana will evaluate the impact of two programs that connect social workers with people who have experienced an overdose, or who have a mental health illness, to treatment and resources. “We believe we are on the right track in the work we are doing with the crisis intervention social worker and the recovery coach, but having an outside evaluation of both programs would be extremely helpful in understanding whether and what aspects of these programs are most effective,” says Police Captain Kevin Hunter.
The County of San Diego’s Office of Evaluation, Performance and Analytics, and Planning & Development Services will engage with J-PAL staff to explore evaluation opportunities for two programs that are a part of the county’s Climate Action Plan. The Equity-Driven Tree Planting Program seeks to increase tree canopy coverage, and the Climate Smart Land Stewardship Program will encourage climate-smart agricultural practices. Ricardo Basurto-Davila, chief evaluation officer, says that “the county is dedicated to evidence-based policymaking and taking decisive action against climate change. The work with J-PAL will support us in combining these commitments to maximize the effectiveness in decreasing emissions through these programs.”
J-PAL North America looks forward to working with the selected collaborators in the coming months to learn more about these promising programs, clarify our partner’s evidence goals, and design randomized evaluations to measure their impact.
By Visiting Prof Jeannette Ickovics from the Division of Social Sciences, and May Lee, a Psychology student, both from the Yale-NUS CollegeThe Straits Times, 13 November 2024, Opinion, pB4
Marco Mazzotti will be conferred emeritus status at the end of January 2025. A good reason for a portrait of this dedicated process engineer, who came to his field of research quite unexpectedly.
Marco Mazzotti will be conferred emeritus status at the end of January 2025. A good reason for a portrait of this dedicated process engineer, who came to his field of research quite unexpectedly.
Linzixuan (Rhoda) Zhang, a doctoral candidate in the MIT Department of Chemical Engineering, recently won the 2024 Collegiate Inventors Competition, medaling in both the Graduate and People’s Choice categories for developing materials to stabilize nutrients in food with the goal of improving global health. The annual competition, organized by the National Inventors Hall of Fame and United States Patent and Trademark Office (USPTO), celebrates college and university student inventors. The finali
Linzixuan (Rhoda) Zhang, a doctoral candidate in the MIT Department of Chemical Engineering, recently won the 2024 Collegiate Inventors Competition, medaling in both the Graduate and People’s Choice categories for developing materials to stabilize nutrients in food with the goal of improving global health.
The annual competition, organized by the National Inventors Hall of Fame and United States Patent and Trademark Office (USPTO), celebrates college and university student inventors. The finalists present their inventions to a panel of final-round judges composed of National Inventors Hall of Fame inductees and USPTO officials.
No stranger to having her work in the limelight, Zhang is a three-time winner of the Koch Institute Image Awards in 2022, 2023, and 2024, as well as a 2022 fellow at the MIT Abdul Latif Jameel Water and Food Systems Lab.
"Rhoda is an exceptionally dedicated and creative student. Her well-deserved award recognizes the potential of her research on nutrient stabilization, which could have a significant impact on society," says Ana Jaklenec, one of Zhang’s advisors and a principal investigator at MIT’s Koch Institute for Integrative Cancer Research. Zhang is also advised by David H. Koch (1962) Institute Professor Robert Langer.
Frameworks for global health
In a world where nearly 2 billion people suffer from micronutrient deficiencies, particularly iron, the urgency for effective solutions has never been greater. Iron deficiency is especially harmful for vulnerable populations such as children and pregnant women, since it can lead to weakened immune systems and developmental delays.
The World Health Organization has highlighted food fortification as a cost-effective strategy, yet many current methods fall short. Iron and other nutrients can break down during processing or cooking, and synthetic additives often come with high costs and environmental drawbacks.
Zhang, along with her teammate, Xin Yang, a postdoc associate at Koch Institute, set out to innovate new technologies for nutrient fortification that are effective, accessible, and sustainable, leading to the invention nutritional metal-organic frameworks (NuMOFs) and the subsequent launch of MOFe Coffee, the world’s first iron-fortified coffee. NuMOFs not only protect essential nutrients such as iron while in food for long periods of time, but also make them more easily absorbed and used once consumed.
The inspiration for the coffee came from the success of iodized salt, which significantly reduced iodine deficiency worldwide. Because coffee and tea are associated with low iron absorption, iron fortification would directly address the challenge.
However, replicating the success of iodized salt for iron fortification has been extremely challenging due to the micronutrient’s high reactivity and the instability of iron(II) salts. As researchers with backgrounds in material science, chemistry, and food technology, Zhang and Yang leveraged their expertise to develop a solution that could overcome these technical barriers.
The fortified coffee serves as a practical example of how NuMOFs can help people increase their iron intake by engaging in a habit that’s already part of their daily routine, with significant potential benefits for women, who are disproportionately affected by iron deficiency. The team plans to expand the technology to incorporate additional nutrients to address a wider array of nutritional deficiencies and improve health equity globally.
Fast-track to addressing global health improvements
Looking ahead, Zhang and Yang in the Jaklenec Group are focused on both product commercialization and ongoing research, refining MOFe Coffee to enhance nutrient stability and ensuring the product remains palatable while maximizing iron absorption.
Winning the CIC competition means that Zhang, Yang, and the team can fast-track their patent application with the USPTO. The team hopes that their fast-tracked patent will allow them to attract more potential investors and partners, which is crucial for scaling their efforts. A quicker patent process also means that the team can bring the technology to market faster, helping improve global nutrition and health for those who need it most.
“Our goal is to make a real difference in addressing micronutrient deficiencies around the world,” says Zhang.
Health
Is cheese bad for you?
Nutritionist explains why you’re probably eating way too much
November 14, 2024
3 min read
Part of the
Wondering
series
A series of random questions answered by Harvard experts.
The average American consumes 41.8 pounds of cheese per year. We asked Harvard Chan School nutritionist Walter C. Willett about the health i
A series of random questions answered by Harvard experts.
The average American consumes 41.8 pounds of cheese per year. We asked Harvard Chan School nutritionist Walter C. Willett about the health impact.
Whether cheese is good or bad for health depends on the comparison. It is somewhere in the middle of the spectrum from great (nuts and soy foods) to processed red meat. Like other dairy foods, cheese does have nutritional value, including a high calcium content. However, our calcium recommendations are seriously overstated because they are based on studies of several weeks, which is far too short.
Current National Institutes of Health recommendations suggest Americans older than 18 get 1,000 mg of calcium daily. However, as little as 600 mg is probably enough for most people.
Of course, the amount of cheese makes an important difference, and it has become common to put a huge amount in sandwiches and salads. About one serving of dairy foods a day is probably a good target; some evidence suggests that yogurt has some health advantages, and cheese could be part of that mix. But if you are thinking of a cheese sandwich, consider peanut butter on whole grain bread as an alternative, or adding nuts to your salad instead of cheese.
Like other dairy foods, cheese does have nutritional value, including a high calcium content. However, our calcium recommendations are seriously overstated.
Americans consume about 1.5 servings of dairy foods per day, and the majority of this is now in the form of cheese. This is a major shift over the last several decades; the total amount of dairy foods consumed has not changed greatly, but until recently this was mainly milk. The USDA has been strongly supporting consumption of cheese (despite their own guidelines encouraging reduction in saturated fat), which has probably contributed to this trend.
Some of the increases in cheese consumption are probably due to more people reducing red meat for various reasons including health, animal welfare, and climate change, but the strong promotion of cheese by the USDA has very likely been an important factor. Starting with the Dairy Production Stabilization Act of 1983, a small tax on sales of dairy has gone to the USDA to promote sales of dairy foods, creating a massive conflict of interest within the organization.
In the past, the vast majority of cheese consumed by Americans was cheddar, but we now consume a wider variety. There is no good evidence that one type or another is different for health.
The differences in nutrient content of cheeses are primarily due to the amount of water. Cottage cheese and other fresh cheeses with high water content have higher percentages of lactose — a carbohydrate that decreases with aging. As cheese ages and becomes hard like parmesan or manchego, the lactose is fermented and lost.
However, volume matters. We usually eat more cottage cheese than an aged cheese, so the amount of calories, calcium, and saturated fat can end up not being very different.
In addition to the direct effects of cheese on health, it is important to consider the implications for climate change because dairy production has a large impact on greenhouse gas emissions and land use. In an analysis conducted as part of the EAT-Lancet Commission on healthy and sustainable food systems, we found that if global production of dairy foods increased to 2 servings per day, limiting severe climate change would be difficult.
Any child who’s spent a morning building sandcastles only to watch the afternoon tide ruin them in minutes knows the ocean always wins.Yet, coastal protection strategies have historically focused on battling the sea — attempting to hold back tides and fighting waves and currents by armoring coastlines with jetties and seawalls and taking sand from the ocean floor to “renourish” beaches. These approaches are temporary fixes, but eventually the sea retakes dredged sand, intense surf breaches seawa
Any child who’s spent a morning building sandcastles only to watch the afternoon tide ruin them in minutes knows the ocean always wins.
Yet, coastal protection strategies have historically focused on battling the sea — attempting to hold back tides and fighting waves and currents by armoring coastlines with jetties and seawalls and taking sand from the ocean floor to “renourish” beaches. These approaches are temporary fixes, but eventually the sea retakes dredged sand, intense surf breaches seawalls, and jetties may just push erosion to a neighboring beach. The ocean wins.
With climate change accelerating sea level rise and coastal erosion, the need for better solutions is urgent. Noting that eight of the world’s 10 largest cities are near a coast, a recent National Oceanic and Atmospheric Administration (NOAA) report pointed to 2023’s record-high global sea level and warned that high tide flooding is now 300 to 900 percent more frequent than it was 50 years ago, threatening homes, businesses, roads and bridges, and a range of public infrastructure, from water supplies to power plants.
Island nations face these threats more acutely than other countries and there’s a critical need for better solutions. MIT’s Self-Assembly Lab is refining an innovative one that demonstrates the value of letting nature take its course — with some human coaxing.
The Maldives, an Indian Ocean archipelago of nearly 1,200 islands, has traditionally relied on land reclamation via dredging to replenish its eroding coastlines. Working with the Maldivian climate technology company Invena Private Limited, the Self-Assembly Lab is pursuing technological solutions to coastal erosion that mimic nature by harnessing ocean currents to accumulate sand. The Growing Islands project creates and deploys underwater structures that take advantage of wave energy to promote accumulation of sand in strategic locations — helping to expand islands and rebuild coastlines in sustainable ways that can eventually be scaled to coastal areas around the world.
“There’s room for a new perspective on climate adaptation, one that builds with nature and leverages data for equitable decision-making,” says Invena co-founder and CEO Sarah Dole.
MIT’s pioneering work was the topic of multiple presentations during the United Nations General Assembly and Climate week in New York City in late September. During the week, Self-Assembly Lab co-founder and director Skylar Tibbits and Maldives Minister of Climate Change, Environment and Energy Thoriq Ibrahim also presented findings of the Growing Islands project at MIT Solve’s Global Challenge Finals in New York.
“There’s this interesting story that’s emerging around the dynamics of islands,” says Tibbits, whose U.N.-sponsored panel (“Adaptation Through Innovation: How the Private Sector Could Lead the Way”) was co-hosted by the Government of Maldives and the U.S. Agency for International Development, a Growing Islands project funder.
In a recent interview, Tibbits said islands “are almost lifelike in their characteristics. They can adapt and grow and change and fluctuate.” Despite some predictions that the Maldives might be inundated by sea level rise and ravaged by erosion, “maybe these islands are actually more resilient than we thought. And maybe there’s a lot more we can learn from these natural formations of sand … maybe they are a better model for how we adapt in the future for sea level rise and erosion and climate change than our man-made cities.”
Building on a series of lab experiments begun in 2017, the MIT Self-Assembly Lab and Invena have been testing the efficacy of submersible structures to expand islands and rebuild coasts in the Maldivian capital of Male since 2019. Since then, researchers have honed the experiments based on initial results that demonstrate the promise of using submersible bladders and other structures to utilize natural currents to encourage strategic accumulation of sand.
The work is “boundary-pushing,” says Alex Moen, chief explorer engagement officer at the National Geographic Society, an early funder of the project.
“Skylar and his team’s innovative technology reflect the type of forward-thinking, solutions-oriented approaches necessary to address the growing threat of sea level rise and erosion to island nations and coastal regions,” Moen said.
Most recently, in August 2024, the team submerged a 60-by-60-meter structure in a lagoon near Male. The structure is six times the size of its predecessor installed in 2019, Tibbits says, adding that while the 2019 island-building experiment was a success, ocean currents in the Maldives change seasonally and it only allowed for accretion of sand in one season.
“The idea of this was to make it omnidirectional. We wanted to make it work year-round. In any direction, any season, we should be accumulating sand in the same area,” Tibbits says. “This is our largest experiment so far, and I think it has the best chance to accumulate the most amount of sand, so we’re super excited about that.”
The next experiment will focus not on building islands, but on overcoming beach erosion. This project, planned for installation later this fall, is envisioned to not only enlarge a beach but also provide recreational benefits for local residents and enhanced habitat for marine life such as fish and corals.
“This will be the first large-scale installment that’s intentionally designed for marine habitats,” Tibbits says.
Another key aspect of the Growing Islands project takes place in Tibbits’ lab at MIT, where researchers are improving the ability to predict and track changes in low-lying islands through satellite imagery analysis — a technique that promises to facilitate what is now a labor-intensive process involving land and sea surveys by drones and researchers on foot and at sea.
“In the future, we could be monitoring and predicting coastlines around the world — every island, every coastline around the world,” Tibbits says. “Are these islands getting smaller, getting bigger? How fast are they losing ground? No one really knows unless we do it by physically surveying right now and that’s not scalable. We do think we have a solution for that coming.”
Also hopefully coming soon is financial support for a Mobile Ocean Innovation Lab, a “floating hub” that would provide small island developing states with advanced technologies to foster coastal and climate resilience, conservation, and renewable energy. Eventually, Tibbits says, it would enable the team to travel “any place around the world and partner with local communities, local innovators, artists, and scientists to help co-develop and deploy some of these technologies in a better way.”
Expanding the reach of climate change solutions that collaborate with, rather than oppose, natural forces depends on getting more people, organizations, and governments on board.
“There are two challenges,” Tibbits says. “One of them is the legacy and history of what humans have done in the past that constrains what we think we can do in the future. For centuries, we’ve been building hard infrastructure at our coastlines, so we have a lot of knowledge about that. We have companies and practices and expertise, and we have a built-up confidence, or ego, around what’s possible. We need to change that.
“The second problem,” he continues, “is the money-speed-convenience problem — or the known-versus-unknown problem. The hard infrastructure, whether that’s groins or seawalls or just dredging … these practices in some ways have a clear cost and timeline, and we are used to operating in that mindset. And nature doesn’t work that way. Things grow, change, and adapt on their on their own timeline.”
Teaming up with waves and currents to preserve islands and coastlines requires a mindset shift that’s difficult, but ultimately worthwhile, Tibbits contends.
“We need to dance with nature. We’re never going to win if we’re trying to resist it,” he says. “But the best-case scenario is that we can take all the positive attributes in the environment and take all the creative, positive things we can do as humans and work together to create something that’s more than the sum of its parts.”
Faculty and researchers receive many external awards throughout the year. The MIT School of Engineering periodically highlights the honors, prizes, and medals won by community members working in academic departments, labs, and centers. Summer 2024 honorees include the following:Polina Anikeeva, the Matoula S. Salapatas Professor of Materials Science and Engineering, professor of brain and cognitive sciences, and head of the Department of Materials Science and Engineering, was recognized as a fin
Faculty and researchers receive many external awards throughout the year. The MIT School of Engineering periodically highlights the honors, prizes, and medals won by community members working in academic departments, labs, and centers. Summer 2024 honorees include the following:
Polina Anikeeva, the Matoula S. Salapatas Professor of Materials Science and Engineering, professor of brain and cognitive sciences, and head of the Department of Materials Science and Engineering, was recognized as a finalist for the Blavatnik National Awards in the category of physical sciences and engineering. The Blavatnik National Awards for Young Scientists is the largest unrestricted scientific prize offered to America’s most promising, faculty-level scientific researchers under the age of 42.
Gabriele Farina, the X-Window Consortium Career Development Professor and assistant professor in the Department of Electrical Engineering and Computer Science (EECS), received an honorable mention for the 2023 Doctoral Dissertation Award. The award is presented annually to the author(s) of the best doctoral dissertation(s) in computer science and engineering.
James Fujimoto, the Elihu Thomson Professor in Electrical Engineering, won the 2024 Honda Prize for his research group’s development of optical coherence tomography. The Honda Prize is an international award that acknowledges the efforts of an individual or a group to contribute new ideas that may lead the next generation in the field of ecotechnology.
Jeehwan Kim, an associate professor in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, won the engineering and technology category for the 2024 Falling Walls Global Call for his innovations in semiconductor technology. The Falling Walls Global Call is an international competition that seeks the most recent and innovative science breakthroughs, bringing together science enthusiasts from diverse backgrounds.
Samuel Madden, the College of Computing Distinguished Professor of Computing and faculty head of computer science in the Department of EECS, received the Edgar F Codd Innovations Award. The award is given for innovative and highly significant contributions of enduring value to the development, understanding, or use of database systems and databases.
Jelena Notaros, an assistant professor in the Department of EECS, received the 2024 Optica CLEO Highlighted Talk Award as co-principal investigator. The Optica CLEO Awards Program celebrates the field's technical, research, education, business, leadership, and service accomplishments.
Carlos Portela, the Robert N. Noyce Career Development Professor in the Department of Mechanical Engineering, received the Army Early Career Program Award. The award is among the most prestigious honors granted by the U.S. Army Research Office to outstanding early-career scientists.
Yogesh Surendranath, the Donner Professor of Science in the departments of Chemical Engineering and Chemistry, was recognized as a finalist for the Blavatnik National Awards in the category of chemical sciences. The Blavatnik National Awards for Young Scientists is the largest unrestricted scientific prize offered to the United States' most promising, faculty-level scientific researchers under the age of 42.
Ashia Wilson, an assistant professor in the Department of EECS, received the Best Paper Award at the 2024 ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT). ACM FAccT is an interdisciplinary conference dedicated to bringing together a diverse community of scholars from computer science, law, social sciences, and humanities to investigate and tackle issues in this emerging area.
Nation & World
Many in Native communities applaud U.S. apology over boarding schools
President Biden speaking at the Gila River Indian Community reservation in Laveen, Arizona, on Oct. 25.Manuel Balce Ceneta/AP
Nikki Rojas
Harvard Staff Writer
November 14, 2024
5 min read
Deloria, Gone say action over decadeslong initiative to forcibly assimilate children overdue, necessary
Philip D
Many in Native communities applaud U.S. apology over boarding schools
Nikki Rojas
Harvard Staff Writer
5 min read
Deloria, Gone say action over decadeslong initiative to forcibly assimilate children overdue, necessary
Philip Deloria and Joseph P. Gone had family members who were taken from their homes and placed in government- or church-run boarding schools as part of a decadeslong federal initiative aimed at forcibly assimilating thousands of Native children.
Late last month, President Biden made a historic apology to Native Americans on behalf of the U.S. government. “I know no apology can or will make up for what was lost during the darkness of the federal boarding school policy,” Biden said during a visit to the Gila River Indian Community in Arizona. “But today, we’re finally moving forward into the light.”
The gesture was applauded by many in the community, and for good reason, said Deloria, the Leverett Saltonstall Professor of History.
“Apologies have not exactly been forthcoming from the federal and state governments and the churches, and the various entities that have enacted some of these programs on any people over the years. Any time that there’s recognition of those histories, I think it’s really important,” he said. “For many Native people, the moments where the rituals of formal American diplomacy are actually visible is also recognition of Native nationhood and of Native continuities and futurities.”
“A lot of people will be grateful for this apology, irrespective of the motivators for it, and are grateful that he appointed Secretary [Debra] Haaland, because it wouldn’t have happened without her,” added Gone, anthropology professor and faculty director of the Harvard University Native American Program. Gone credited Haaland, the first Native American to serve as U.S. secretary of the interior, for making the “boarding school wound” a priority during Biden’s administration.
Boarding schools, which often kept children away from their families for long periods of time, forced American Indian, Alaska Native, and Native Hawaiian students to speak English and prohibited them from speaking their own languages. These children were also banned from learning or practicing their own religions.
“The parts that are worth emphasizing are just the sheer brutality of many of these schools,” Deloria said. The children were subjected to physical and emotional abuse and sometimes served as free labor. Many died after contracting illnesses at the schools, he pointed out.
The federal initiative continued well into the 20th century. A July investigative report by Haaland’s department revealed that 19,000 Native children were forced into these boarding schools, with nearly 1,000 dying while there.
At the age of 5, Gone’s great-grandfather Many-Plumes was taken to a federally run industrial school in Fort Belknap Agency in Montana, where his name was changed to Frederick Peter Gone. There, the young boy was kept away from family and abused, he said.
“It colored his life and the life of our descendants ever since in part because of these experiences,” Gone noted.
Similar boarding or industrial schools were also run by Christian, Mormon, and Catholic churches. Deloria’s grandfather and great-aunts went to church boarding schools that were just “a little better” than other federal or religious-run institutions.
“There’s an entire theory of historical trauma, which is largely based around the kinds of ways in which boarding-school trauma suffered by these children is passed down to subsequent generations,” he said.
In 1928, the “Meriam Report: The Problem of Indian Administration” highlighted the ineffectiveness of the boarding-school policy. Following reforms, some of the federally run schools transformed into places where Native students could interact with members of different tribes, Gone said.
“In the ’60s and ’70s, going to these schools sometimes could be more interesting than being in your tiny, little rural school on the reservation where you already know everybody,” Gone said. “One of the unintended consequences is you had a lot of intermarriage among Indian people who met at boarding schools.”
Despite reforms, the impact of boarding schools is felt to this day. In addition to calling on the federal government to apologize, Haaland’s report recommended creating a national memorial commemorating of Native children who died in the schools, and an investment in Native communities and their languages.
The Biden administration signed legislation that invested more than $45 billion in Native communities through the American Rescue Plan, the Bipartisan Infrastructure Law, and the Inflation Reduction Act.
Deloria and Gone suggested some of the funds should be invested in healthcare, particularly in a way in which tribal nations can retain their sovereignty and autonomy. “There’s no domain of Indian life that wouldn’t benefit from additional resources,” Gone said.
Biden’s apology came just days before the recent presidential election, but the two professors said the timing was unimportant to them. “It may be that this is like a capstone for Biden, and it may be a cynical gesture in relation to the election, but it may also be the beginning of something new that goes forward,” Deloria said.
Visiting Professor Joël Ouaknine awarded €7.5m ERC Synergy grant for project aiming to revolutionise the algorithmic theory of discrete linear dynamical systems and related formalisms
Visiting Professor Joël Ouaknine awarded €7.5m ERC Synergy grant for project aiming to revolutionise the algorithmic theory of discrete linear dynamical systems and related formalisms
Over 1,200 people from 49 countries convened at the inaugural “Global Climate Finance and Risks,” virtual conference co-hosted by Cornell Atkinson, the Cornell S.C. Johnson College of Business and the U.S. Treasury’s Office of Financial Research. This year’s U.N. COP29 in Baku will emphasize climate finance solutions.
Over 1,200 people from 49 countries convened at the inaugural “Global Climate Finance and Risks,” virtual conference co-hosted by Cornell Atkinson, the Cornell S.C. Johnson College of Business and the U.S. Treasury’s Office of Financial Research. This year’s U.N. COP29 in Baku will emphasize climate finance solutions.
“The question behind my doctoral research is simple,” says Kunal Singh, an MIT political science graduate student in his final year of studies. “When one country learns that another country is trying to make a nuclear weapon, what options does it have to stop the other country from achieving that goal?” While the query may be straightforward, answers are anything but, especially at a moment when some nations appear increasingly tempted by the nuclear option.From the Middle East to India and Paki
“The question behind my doctoral research is simple,” says Kunal Singh, an MIT political science graduate student in his final year of studies. “When one country learns that another country is trying to make a nuclear weapon, what options does it have to stop the other country from achieving that goal?” While the query may be straightforward, answers are anything but, especially at a moment when some nations appear increasingly tempted by the nuclear option.
From the Middle East to India and Pakistan, and from the Korean peninsula to Taiwan, Singh has been developing a typology of counterproliferation strategies based on historical cases and to some degree on emergent events. His aim is to clarify what states can do “to stop the bomb before it is made.” Singh’s interviews with top security officials and military personnel involved in designing and executing these strategies have illuminated tense episodes in the past 75 years or so when states have jockeyed to enter the elite atomic club. His insights might upend some of the binary thinking that dominates the field of nuclear security.
“Ultimately, I’d like my work to help decision-makers predict counterproliferation strategy, and draw lessons from it on how to shield their own citizens and economies from the impact of these strategies,” he says.
Types of nonproliferation tactics
On Oct. 7, 2023, Singh awoke to air raid sirens in Jerusalem, where he was conducting interviews, and discovered Israel was under attack. He was airlifted to safety back to the United States, having borne witness to the start of a regional war that “now has become relevant to my research,” he says.
Before his hasty departure, Singh was investigating two singular episodes where military force was deployed to advance nonproliferation goals: Israel’s airstrikes against nuclear reactors in 1981 in Iraq, and in 2007 in Syria. To date, these have been the only major attacks on nuclear facilities outside of an active war.
“I spoke with Prime Minister Ehud Olmert, who ordered the strike in Syria, and with the commander of the Israeli Air Force who planned the Iraq airstrike, as well as with other members of the security bureaucracy,” says Singh. “Israel feels a large degree of threat because it is a very small country surrounded by hostile powers, so it takes a military route to stop another state from acquiring nuclear weapons,” says Singh. But, he notes, “most of the states which are not in this predicament generally resort to diplomatic methods first, and threaten violence only as a last resort.”
Singh defines the military response by Israel as “kinetic reversion,” one of five types of counterproliferation strategies he has identified. Another is “military coercion,” where a state threatens the use of military force or uses moderate force to demonstrate its commitment to preventing the pursuit of the bomb. States can also use diplomatic and economic leverage over the proliferant to persuade it to drop its nuclear program, what Singh calls “diplomatic inhibition.”
One form this strategy takes is when one country agrees to give up its program in return for the other doing the same. Another form involves “placing sanctions on a country and excluding them from the world economy, until the country rolls back its program — a strategy the U.S. has employed against Iran, North Korea, Libya, and Pakistan,” says Singh.
India was rumored to have embraced military tactics. “I had always read about the claim that India was ready to attack the Pakistani uranium enrichment plant in Kahuta, and that planes were called off at the last minute,” Singh says. “But in interview after interview I found this was not the case, and I discovered that many written accounts of this episode had been completely blown up.”
In another strategy, “pooled prevention,” nations can band together to apply economic, diplomatic, and military pressure on a potential proliferator.
Singh notes that diplomatic inhibition, pooled prevention, and military coercion have succeeded, historically. “In 2003, Libya gave up its nuclear weapons program completely after the U.S. and U.K. placed sanctions on it, and many states do not even start a nuclear weapons program because they anticipate an attack or a sanction.”
The final strategy Singh defines is “accommodation,” where one or more states decide not to take action against nuclear weapon development. The United States arrived at this strategy when China began its nuclear program — after first considering and rejecting military attacks.
Singh hopes that his five kinds of strategies challenge a “binary trap” that most academics in the field fall into. “They think of counterproliferation either as military attack or no military attack, economic sanctions or no sanctions, and so they miss out on the spectrum of behaviors, and how fluid they can be.”
From journalism to security studies
Singh grew up in Varanasi, a Hindu holy city in the state of Uttar Pradesh. Frequent terrorist attacks throughout India, and some inside his city’s temples, made a deep impression on him during his childhood, he says. A math and science talent, he attended the Indian Institute of Technology, majoring in metallurgical and materials engineering. After a brief stint with a management consulting firm, after college, he landed a job at a think tank, the Center for Policy Research in New Delhi.
“When I moved to New Delhi, I suddenly saw a world which I didn’t know existed,” Singh recalls. “I began meeting people for an evening round of discussions and began reading voraciously: books, editorial and opinion pages in newspapers, and looking for a greater sense of purpose and meaning in my work.”
His widening interests led to a job as staff writer, first at Mint, a business newspaper, and then to the Hindustan Times, working on both papers’ editorial pages. “This was where most of my intellectual development happened,” says Singh. “I made social connections, and many of them grew more towards the academics in the security field.”
Writing about a nuclear security question one day, Singh reached out to an expert in the United States: Vipin Narang, the Frank Stanton Professor of Nuclear Security and Political Science at MIT. Over time, Narang helped Singh realize that the kind of questions Singh hoped to answer “lay more in the academic than in the journalistic domain,” recounts Singh.
In 2019, he headed to MIT and began a doctoral program focused on security studies and international relations. In his dissertation, “Nipping the Atom in the Bud: Strategies of Counterproliferation and How States Choose Among Them,” Singh hopes to move beyond a classic, academic debate: that nuclear weapons are either very destabilizing, or very stabilizing.
“Some argue that there is stability in the world because two states armed with nuclear weapons will avoid nuclear war, because they understand nobody will win a nuclear war,” explains Singh. “If this view is true, then we shouldn’t be alarmed by the proliferation of these weapons.” But “the counterargument is that there will always be an off chance someone will use these weapons, and so states should “try to use all their military and economic might to prevent another state from gaining nuclear weapons.”
As it turns out, neither extreme view governs in the real world. “The main takeaway from my research is that states are obviously concerned when some other country tries to make nuclear weapons, but they are not so concerned that in order to prevent a future destabilizing event, they are ready to destabilize the world as of now.”
In the final throes of writing his thesis and preparing for life as an academic, Singh remains alert to the parlous state of affairs in the Middle East and elsewhere. “I keep following events, knowing that something may prove relevant to my research,” he says.
Given the tense times and the often dark implications of his subject matter, Singh has found an optimal mode of blowing off steam: a daily badminton match. He and his wife also “binge watch either a spy thrill or a murder mystery every Saturday,” he says.
In a world both increasingly interconnected and increasingly threatened by regional conflicts, Singh believes, “there is still much to be discovered about how the world thinks about nuclear weapons, including what the impacts of nuclear weapons use might be,” he says. “I’d like to help shine a light on those new things, and broaden our understanding of nuclear weapons and the politics of nuclear security.”
The new “How NYC Moves” report, co-authored by a Cornell Tech expert and New York City’s Mayor’s Office, offers strategies to leverage technology to speed transportation analyses and unlock housing development.
The new “How NYC Moves” report, co-authored by a Cornell Tech expert and New York City’s Mayor’s Office, offers strategies to leverage technology to speed transportation analyses and unlock housing development.
The arrival of professor J. Kēhaulani Kauanui marks a key stage in University efforts to enhance research and scholarship, along with recognition and support for Native and Indigenous students and scholars.
The arrival of professor J. Kēhaulani Kauanui marks a key stage in University efforts to enhance research and scholarship, along with recognition and support for Native and Indigenous students and scholars.
NUS graduates are regarded as the ninth most employable in the world, according to the Global Employability University Ranking and Survey (GEURS) 2025.Produced by French consultancy Emerging and published by the Times Higher Education, the annual study gathers global employer insights to rank the top 250 universities that are the best at developing career- and workplace-ready graduates. NUS has been consistently ranked in the top 10 since 2020. This year, it ranked second-highest in Asia behind
Produced by French consultancy Emerging and published by the Times Higher Education, the annual study gathers global employer insights to rank the top 250 universities that are the best at developing career- and workplace-ready graduates.
NUS has been consistently ranked in the top 10 since 2020. This year, it ranked second-highest in Asia behind eighth-placed The University of Tokyo. The first, second and third spots in the overall ranking went to the Massachusetts Institute of Technology, California Institute of Technology and Stanford University respectively.
Professor Aaron Thean, NUS Deputy President (Academic Affairs) and Provost said, “The NUS educational experience nurtures in our students a keen sense of curiosity, critical thinking, data-driven analytical skills, and global sensibilities. Strongly grounded in academics with market and global exposure, they are highly sought after across industries in Singapore and internationally, confident and ready to create impact and change. With technological disruptions now the norm, NUS is actively integrating skills and knowledge of fast-developing domains like AI and data analytics into our curriculum so that our students are future-ready.
“Our consistently high rankings in the Global Employability University Ranking and Survey are a testament to the quality of our interdisciplinary education and the outstanding capabilities of our graduates, who continue to thrive and lead in the competitive global workforce,” he added.
According to Emerging’s Co-founder and Managing Director Ms Sandrine Belloc, the three main drivers that positioned NUS in the top 10 were graduate skills, digital mindset and academic performance. With employability becoming a key benchmark for universities, NUS’ ranking reflects its commitment to preparing students for the future, she added. “By offering a combination of essential skills, a powerful network, and real-world job opportunities, they ensure students are ready to thrive in the workforce and excel in the years ahead."
Conducted between June to September 2024, the 2025 survey was expanded to include 13,240 international employers from 33 countries across five continents who recruited 1.3 million young graduates for non-technical, business, IT and engineering roles in 2024 to 2025.
Universities are assessed across 35 criteria, from which the following seven key employability drivers were identified: academic excellence, specialisation, graduate skills, digital mindset, focus on work expertise, social impact and leadership, and internationality
Nurturing diverse skills to prepare students for the future workplace
NUS has placed a strong emphasis on nurturing workplace-ready graduates. Earlier this year, the University launched the NUSOne initiative to foster a holistic and well-rounded university experience that integrates formal learning with student life and other out-of-classroom experiences to encourage greater self-directed personal growth and development.
Key features of the initiative include the Transition to Higher Education Programme, which offers courses to equip first-year students with academic and non-academic skills related to the science of learning and the use of generative AI tools; dedicating Wednesday afternoons for students to participate in non-academic activities, as well as the addition of a new sports-themed hostel named Valour House that seeks to build an active and inclusive community bonded through shared athletic experiences.
The University has also been intensifying efforts on equipping our students with career competencies to excel in the workplace. The NUS Centre for Future-ready Graduates supports students with a four-year career-readiness roadmap to encourage early career planning while broadening their exposure to industry.
They offer an impressive suite of resources and initiatives such as opportunities for overseas internships and study trips to fast-growing economies in Southeast Asia, India and China; career-readiness programmes including programmes like Career Booster and Career Advancement which advance students’ job search, interview, and workplace skills; access to a University-wide jobs and internships portal, mentorship programmes, dedicated career advisors, in addition to regular career fairs and recruitment talks.
Researchers at ETH Zurich are utilising artificial intelligence to analyse the behaviour of laboratory mice more efficiently and reduce the number of animals in experiments.
Researchers at ETH Zurich are utilising artificial intelligence to analyse the behaviour of laboratory mice more efficiently and reduce the number of animals in experiments.
Setti Warren (left) and Pete Buttigieg.Niles Singer/Harvard Staff Photographer
Nation & World
Buttigieg urges focus on local, state projects that can win wide support
Transportation secretary discusses aviation, roadway challenges during his time in office, administration’s frustrations, issues awaiting new president
Clea Simon
Harvard Correspondent
November 13, 2024
4 min read
The de
Buttigieg urges focus on local, state projects that can win wide support
Transportation secretary discusses aviation, roadway challenges during his time in office, administration’s frustrations, issues awaiting new president
Clea Simon
Harvard Correspondent
4 min read
The deeply divided U.S. is like “two people locked in a wrestling match on the edge of a cliff,” said Secretary of Transportation Pete Buttigieg at a campus event Monday evening.
“The implicit working theory of our administration has been if we could just deliver on the basics,” such as safe roads and bridges and clean drinking water, “solving some of those basic problems would move our wrestling match a few feet from the edge of the cliff,” he said. “But as everyone has noticed, we don’t seem to be that far from the edge of the cliff.”
He noted that part of the problem for the Biden White House was time. “I would argue that we’ve made enormous progress, basically full employment,” he said. “But so many of the economic benefits that we’ve been working on are things that take years.”
Buttigieg ’04 returned to campus for a Harvard Kennedy School discussion before a capacity crowd with Setti Warren, Institute of Politics director, on his own work at the Department of Transportation, some of the issues awaiting incoming President Donald Trump, and the need for Democrats to focus on advancing priorities through projects on the local and state level that can win wide support.
The transportation secretary said that as he was speaking in his official capacity he would largely avoid talking partisan politics. And he spent much of this time detailing his time in office.
Problems with commercial aviation, he said, loomed large, with issues ranging from a lack of transparency about fees and passenger reimbursements to safety concerns, such as when a section of the fuselage of an Alaska Airlines plane blew out during a flight in January.
In response, Buttigieg said, his department took a holistic response, from a package of consumer protections to a “dashboard” that tracks consumer complaints and airline compliance.
“First we used transparency to supply change, and now we have the letter of the [recently passed aviation] law” while also stepping up enforcement, he said, citing such regulations as new ones that make refunds automatic when flights are canceled (without alternatives being offered) or unduly delayed (three hours for a domestic flight, six hours for an international flight).
“We’re doing these things not against the airlines, but because we need them to deliver better service,” he said.
Ongoing issues include equal access for those with disabilities, he said, noting how some of those passengers say they dehydrate themselves because they know they will not be able to access airplane restrooms. Road safety, as well, remains a concern.
“We lose more than 100 people a day on our roadways,” he said. Comparing this statistic to the safety of air travel, with all its shortcomings, he concluded: “We should be able to do better with forms of transportation on the surface.”
Such basic concerns were the goals of the Biden administration, he said. Acknowledging issues with inflation even as the economy enjoyed robust employment, he explained that focusing on infrastructure improvements was viewed as a possible way to ease the country’s divisiveness.
Looking back on the past four years, the secretary noted the long-term nature of the majority of the Biden administration’s projects and how those have set up the Trump administration for its next moves.
Trying “not to sound bitter,” he pointed out that the incoming administration “will inherit a lot of groundwork that has been laid, jobs that were always expected to come online in 2026 and ’27.” This could provide the basis for a boom, he said.
“The building trades have a pipeline of work that they haven’t seen since before I was born,” said the 42-year-old, who also cited “interest rates ticking down.”
However, he added, the new administration may also create its own challenges. For example, he said, “if something disrupts our supply chains, such as mass deportations,” Americans may once again have to worry about the economy.
Looking ahead, Buttigieg saw common ground in “local voices.” “We’re doing 63,000 local projects,” he said, citing projects that came to the administration “because a state or a city or a tribe … wanted to get something done.”
He stressed the potential for Democrats to muster bipartisan support for such projects. “Principled conservatism has some regard for the local — if anything more regard than the left,” said the former mayor of South Bend, Indiana. “I am hopeful that that principle will survive.
“In moments like this our salvation will come from the local and the state level. A lot of the answers are going to come from mayors, from communities, from states.”
Bohdan Tokarskyi. Stephanie Mitchell/Harvard Staff Photographer
Arts & Culture
12 centuries of Ukrainian literature in 12 weeks?
Bohdan Tokarskyi, new assistant professor, says he’s up to the challenge
Eileen O’Grady
Harvard Staff Writer
November 13, 2024
4 min read
At times this fall, Bohdan Tokarskyi has felt split between two contrasting worlds.
On one side is Cambridge, where
Bohdan Tokarskyi, new assistant professor, says he’s up to the challenge
Eileen O’Grady
Harvard Staff Writer
4 min read
At times this fall, Bohdan Tokarskyi has felt split between two contrasting worlds.
On one side is Cambridge, where he works as a new assistant professor of Slavic languages and literatures. On the other are the sirens, bomb shelters, blackouts, and flattened universities that flash across his phone each morning when reading about Russia’s war with Ukraine.
“I feel great responsibility to be teaching Ukrainian literature and culture at a historic moment like this, when Ukraine is at the forefront of the clash between democracies and dictatorships,” said Tokarskyi. “It is really humbling for me what impressive work the educators and students in Ukraine continue to do against all odds and in spite of the horror of the war. This is a gigantic reminder that education is a privilege.”
“I want to provide a bird’s-eye view of Ukraine’s centuries-long literature and culture,” said Tokarskyi, who was a fellow at Harvard’s Ukrainian Research Institute in the spring. “Because Ukraine’s lands have been subjected to different imperial powers over the many centuries, there has been a lot of oppression of the Ukrainian language and culture. In my course, I show to my students how time and again in Ukrainian literature we find themes like solidarity, human rights, the pursuit of justice, feminism and, of course, resilience.”
Literature has played a central role in shaping Ukraine’s history, Tokarskyi said, and still does. During the 2013-2014 Euromaidan demonstrations, graffiti portraits, and quotes from Lesya Ukrainka, Taras Shevchenko, and other writers were used as inspiration to protesters. This past January, poet Maksym Kryvtsov read works by the 20th-century poet Vasyl Stus in videos posted to social media. The very next day, Kryvtsov was killed on the frontlines.
“This reminds us that even nowadays Ukrainian writers are fighting and being killed defending their country and their culture,” Tokarskyi said. “But it also shows what great importance this cultural tradition has in Ukraine. It connects cultural thought across history, even when the producers of this culture were oppressed and executed.”
Tokarskyi is currently writing the first-ever English-language book on Stus, a dissident poet who spent more than a decade in Soviet prisons. He is also collaborating with poet and translator Nina Murray on an English-language volume of Stus’ selected works.
“Picture a poet of the stature of T.S. Eliot or Rainer Maria Rilke, working deep in the mines of a Gulag labor camp with an 80-kilogram-heavy rock bolt, managing nonetheless to produce some of the most exquisite post-war poetry in Europe,” Tokarskyi said. “You would expect that someone with a biography like that would create a work that is overtly political. But in his case, his response to the extreme conditions in which he found himself was instead producing this highly introspective poetry.”
The book is a passion project for Tokarskyi, who said Stus’ work helped inspire him to switch fields and pursue literature after completing an international law degree at the Taras Shevchenko National University of Kyiv in 2014.
“To me, Stus is a paragon of moral imperative and the pursuit of authenticity that is not only fighting against something but also asking oneself ceaselessly, ‘How can I become my true self?’ — and doing that by creating an absolutely innovative poetic language,” he said. “One of the extraordinary things about Stus’ poetic style is the sheer number of neologisms — new words he coined to be able to capture these between states of our own identity, of these not-yet-crystallized selves.”
Next semester Tokarskyi will teach the graduate-level seminar “Modernisms: Ukrainian, Soviet, European.” Also on the agenda is a first-year seminar titled “Making the Self: Poetics of Authenticity,” which will examine how writers and philosophers seek to answer the question “What does it mean to be authentic?” which Tokarskyi says is all the more urgent in the era of social media and artificial intelligence.
Tokarskyi is excited about introducing graduate students to a “treasure trove” of potential Ph.D. projects. “My door is always open for students, and I cannot wait to help them explore and discover Ukrainian literature.”
Science & Tech
‘Harnessing evolution’
Anne J. Manning
Harvard Staff Writer
November 13, 2024
3 min read
New tool allows researchers to study gene mutation directly within living human cells
Gene mutations have consequences both good and bad — from resistance to conditions like diabetes to susceptibility to certain cancers.
In order to study these mutations, scientists need to int
New tool allows researchers to study gene mutation directly within living human cells
Gene mutations have consequences both good and bad — from resistance to conditions like diabetes to susceptibility to certain cancers.
In order to study these mutations, scientists need to introduce them directly into human cells. But changing genetic instructions inside cells is complex. The human genome comprises 3 billion base pairs of DNA divided across tens of thousands of genes.
To that end, Harvard researchers have created a tool that allows them to rapidly create mutations only in particular genes of interest without disturbing the rest of the genome. Described in Science, their tool, called Helicase-Assisted Continuous Editing (HACE), can be deployed to predetermined regions of the genome in intact, living cells.
“The development of tools like this marks a significant leap forward in our ability to harness evolution directly within human cells,” said first author Xi Dawn Chen, a Griffin Graduate School of Arts and Sciences student studying synthetic biology in the Department of Stem Cell and Regenerative Biology. “By allowing targeted mutagenesis in specific parts of the genome, this tool opens the door to creating enzymes and treatments that were previously out of reach.”
“HACE combines CRISPR’s precision with the ability to edit long stretches of DNA, making it a powerful tool for targeted evolution.”
Fei Chen
Unlike current methods for mutagenesis, which involve inserting extra copies of genes or broadly mutating many different genes at once, HACE offers the advantage of being directed to locations — like going to a specific address, rather than a neighborhood. The team’s novel bioengineering involves combining a helicase, which is an enzyme that naturally “unzips” DNA, with a gene-editing enzyme. They then use the gene-editing technology CRISPR-Cas9 to guide the protein pair to the gene they want to mutate. As the helicase unzips the DNA, it introduces mutations into only that gene sequence.
“HACE combines CRISPR’s precision with the ability to edit long stretches of DNA, making it a powerful tool for targeted evolution,” explained senior author Fei Chen, assistant professor in the Department of Stem Cell and Regenerative Biology and member at the Broad Institute.
To demonstrate the tool’s power in the lab, the scientists used it to identify drug resistance mutations in a gene called MEK1, which cancer treatments often target but frequently fail because the diseased cells mutate resistance mechanisms. Using HACE, the team sequenced only those mutated genes and pinpointed several unique changes associated with resistance to cancer drugs like trametinib and selumetinib, offering insights into how mutations affect drug performance.
They also examined how mutations in SF3B1, a gene involved in a biomolecular process called RNA splicing, affects RNA assembly. Mutations in this gene are common in blood cancers, but it’s been unclear which mutations cause the splicing defects; with HACE, the team could easily identify those changes.
And in partnership with Bradley Bernstein’s lab at Harvard Medical School and Dana-Farber Cancer Institute, the researchers also used the tool to better understand how changes in a regulatory DNA region affect the production of a protein in immune cells recognized as a potential target for cancer immunotherapies.
Bernstein said tools like HACE could someday allow massive edits of gene regulatory sequences that could then be coupled with deep learning computation for deciphering. “One can imagine many new therapeutic opportunities that involve precise edits or tuning of these regulatory sequences to ‘fix’ gene activity and ameliorate disease,” Bernstein said.
This research was supported by multiple sources including the National Institutes of Health, the Broad Institute, and the Harvard Stem Cell Institute.
Revealing twists, turns of evolution from sprawling to upright posture
Mammals, including humans, stand out with their distinctively upright posture, a trait that fueled their evolutionary success. Yet the earliest known ancestors of modern mammals more closely resembled reptiles, with limbs stuck out to their sides in a sprawled posture.
The shift from a sprawled stance like that of lizards to the upright posture of modern mammals, as in humans, dogs, and horses, marked a pivotal moment in evolution. Despite more than a century of study, the exact how, why, and when behind this leap has remained elusive.
A new study published in Science Advances provides fresh insights into this mystery, revealing the shift from a sprawled to upright posture in mammals was anything but straightforward. Using methods that blend fossil data with advanced biomechanical modeling, the researchers found that this transition was surprisingly complex and nonlinear, and occurred much later than previously believed.
Lead author and postdoctoral fellow Peter Bishop, and senior author Professor Stephanie Pierce, both in the Department of Organismic and Evolutionary Biology, began by examining the biomechanics of five modern species that represent the full spectrum of limb postures, including a tegu lizard (sprawled), an alligator (semi-upright), and a greyhound (upright).
“By first studying these modern species, we greatly improved our understanding of how an animal’s anatomy relates to the way it stands and moves,” said Bishop. “We could then put it into an evolutionary context of how posture and gait actually changed.”
The researchers extended their analysis to eight exemplar fossil species from four continents spanning 300 million years of evolution. The species ranged from the 1-ounce proto-mammal Megazostrodon to the Ophiacodon, which weighed hundreds of pounds, and also included animals like the sail-backed Dimetrodon and the saber-toothed predator Lycaenops. Using principles from physics and engineering, Bishop and Pierce built digital biomechanical models of how the muscles and bones attached to each other. These models allowed them to generate simulations that determined how much force the hindlimbs could apply on the ground.
“The amount of force that a limb can apply to the ground is a critical determinant of locomotor performance in animals,” said Bishop. “If you cannot produce sufficient force in a given direction when it’s needed, you won’t be able to run as fast, turn as quickly, or worse still, you could well fall over.”
The computer simulations produced a 3D “feasible force space” that captures a limb’s overall functional performance. “Computing feasible force spaces implicitly accounts for all the interactions that can occur between muscles, joints, and bones throughout a limb,” said Pierce. “This gives us a clearer view of the bigger picture, a more holistic view of limb function and locomotion and how it evolved over hundreds of millions of years.”
While the concept of a feasible force space has been around since the 1990s, this study is the first to apply it to the fossil record to understand how extinct animals once moved. The authors packaged the simulations into new “fossil-friendly” computational tools that can aid other paleontologists in exploring their own questions, as well as help engineers design better bio-inspired robots that can navigate complex or unstable terrain.
The study revealed several important “signals” of locomotion, including that the overall force-generating ability in the modern species was maximal around the postures that each species used in their daily behavior. Bishop and Pierce say this made them confident that the results obtained for the extinct species genuinely reflected how they stood and moved when alive.
After analyzing the extinct species, the researchers discovered that locomotor performance peaked and dipped over millions of years, rather than progressing in a simple, linear fashion from sprawling to upright. Some extinct species also appeared to be more flexible — able to shift back and forth between more sprawled or more upright postures, like modern alligators and crocodiles do. Others showed a strong reversal toward more sprawled postures before mammals evolved. Paired with the study’s other results, this indicated that the traits associated with upright posture in today’s mammals evolved much later than previously thought, most likely close to the common ancestor of therian mammals.
These findings also help reconcile several unresolved problems in the fossil record. For example, it explains the persistence of asymmetric hands, feet, and limb joints in many mammal ancestors, traits typically associated with sprawling postures among modern animals. It can also help explain why fossils of early mammal ancestors are frequently found in a squashed, spread-eagle pose — a pose more likely to be achieved with sprawled limbs, while modern placental and marsupial fossils are typically found lying on their sides.
“It is very gratifying as a scientist, when one set of results can help illuminate other observations, moving us closer to a more comprehensive understanding,” Bishop said.
Filmmaker’s documentaries bring complex history to Busch-Reisinger
Samantha Laine Perfas
Harvard Staff Writer
4 min read
Berlin-based filmmaker Hito Steyerl was 23 when she witnessed the fall of the Berlin Wall in the late 1980s and early ’90s. Some of her earliest films document this fraught period of Germany’s history, capturing the rise in xenophobic, racist, and anti-Semitic violence that followed unification. But that was more than 30 years ago, making the specifics a bit difficult to remember, she joked during an event held at the Harvard Art Museums on Oct. 29.
“It almost feels as if … a different person made these films,” she told those gathered. “It’s strange for me to try to talk about it; don’t ask me any details,” she added with a laugh.
“As an exhibition, [it] features artists from different backgrounds and generations and [has work] that complicates notions of German identity, especially the idea of ethnic and cultural homogeneity,” said Lynette Roth, the Daimler Curator of the Busch-Reisinger. “We’ve seen that in recent months incredible conversations and questions around the question of national identity, both here in the United States and abroad.”
Steyerl was invited to speak as part of the annual Busch-Reisinger Museum Lecture series, which started in 2005 and is supported by the German Friends of the Busch-Reisinger Museum. She shared her experience filming her early documentaries, and explained the connection between some of her modern work and Germany’s evolution as a country, historically and technologically.
Steyerl said that one of the films, “The Empty Center” (1998), took eight years to complete. At the time, she was working with Wim Wenders, a filmmaker she met while studying in Tokyo. He was shooting a film called “Until the End of the World” and was “too busy” to capture the fall of the Berlin Wall himself, so he gave Steyerl a camera and told her to go document what she saw. Over the course of eight years, she filmed the wall coming down in an area she called “no man’s land” — what used to be a minefield between the East and the West between the two walls — and its subsequent transition and real estate development. In many ways, she hoped to highlight the transition from going to one border system (a literal wall) to another (the borders of privatization and capitalism).
“That’s basically the organizing principle of that film,” she said. “The superimpositions [are] showing something which had remained the same … but everything else had changed a lot.”
Throughout her lecture, Steyerl showed clips of her older documentaries. She also shared portions of her more contemporary work, such as her 2015 film “Factory of the Sun,” which uses different forms of imagery — video games, drone surveillance, dance — to explore financial power, control, and the spread of information in our increasingly technology-driven world.
After the event, attendees were invited to explore the “Made in Germany?” exhibit, which includes three of Steyerl’s films. Other works on display include Katharina Sieverding’s monumental pigment-on-metal print “Deutschland wird deutscher XLI/92” (“Germany Becomes More German XLI/92”) from 1992; Ulrich Wüst’s hand-crafted leporello (accordion book) “Hausbuch” (“House Book”) (1989–2010); and a loan of East Germany-born Henrike Naumann’s “Ostalgie” (2019), a room-sized installation addressing the immediate post-Wall period in Germany’s “new” federal states. Additionally, a special “Made in Germany?” playlist featuring music from the 1980s to today is available on Spotify, as well as a print catalog accompanying the exhibit.
The exhibition is on view through Jan. 5, 2025, in the Special Exhibitions Gallery and adjacent University Research Gallery on Level 3 of the Harvard Art Museums.
A new analysis finds that Cornell Tech, its alumni and startups achieved $768 million in total economic impact in New York City in the 2023-24 fiscal year. That impact is expected to reach $1.5 billion by 2030.
A new analysis finds that Cornell Tech, its alumni and startups achieved $768 million in total economic impact in New York City in the 2023-24 fiscal year. That impact is expected to reach $1.5 billion by 2030.
People in their late teens experience an increased sensitivity to threats after just a few hours left in a room on their own – an effect that endures even if they are interacting online with friends and family.
This is according to latest findings from a cognitive neuroscience experiment conducted at the University of Cambridge, which saw 40 young people aged 16-19 undergo testing before and after several hours alone – both with and without their smartphones.
Many countries have declared an ep
People in their late teens experience an increased sensitivity to threats after just a few hours left in a room on their own – an effect that endures even if they are interacting online with friends and family.
This is according to latest findings from a cognitive neuroscience experiment conducted at the University of Cambridge, which saw 40 young people aged 16-19 undergo testing before and after several hours alone – both with and without their smartphones.
Many countries have declared an epidemic of loneliness*. The researchers set out to “induce” loneliness in teenagers and study the effects through a series of tests, from a Pavlovian task to electrodes that measure sweat.
Scientists found that periods of isolation, including those in which participants could use their phones, led to an increased threat response – the sensing of and reacting to potential dangers. This alertness can cause people to feel anxious and uneasy.
The authors of the study say that isolation and loneliness might lead to excessive “threat vigilance”, even when plugged in online, which could negatively impact adolescent mental health over time.
They say it could contribute to the persistent and exaggerated fear responses typical of anxiety disorders on the rise among young people around the world.
While previous studies show isolation leads to anxious behaviour and threat responses in rodents, this is believed to be the first study to demonstrate these effects through experiments involving humans.
“We detected signs of heightened threat vigilance after a few hours of isolation, even when the adolescents had been connected through smartphones and social media,” said Emily Towner, study lead author from Cambridge’s Department of Psychology.
“This alertness to perceived threats might be the same mechanism that leads to the excessive worry and inability to feel safe which characterises anxiety,” said Towner, a Gates Cambridge Scholar.
“It makes evolutionary sense that being alone increases our vigilance to potential threats. These threat response mechanisms undergo a lot of changes in adolescence, a stage of life marked by increasing independence and social sensitivity.”
"Our experiment suggests that periods of isolation in adolescents might increase their vulnerability to the development of anxiety, even when they are connected virtually.”
Researchers recruited young people from the local area in Cambridge, UK, conducting extensive screening to create a pool of 18 boys and 22 girls who had good social connections and no history of mental health issues.
Participants were given initial tests and questionnaires to establish a “baseline”. These included the Pavlovian threat test, in which they were shown a series of shapes on a screen, one of which was paired with a harsh noise played through headphones, so the shape became associated with a feeling of apprehension.
Electrodes attached to fingers monitored “electrodermal activity” – a physiological marker of stress – throughout this test.**
Each participant returned for two separate stints of around four hours isolated in a room in Cambridge University’s Psychology Department, after which the tests were completed again. There was around a month, on average, between sessions.
All participants underwent two isolation sessions. One was spent with a few puzzles to pass the time, but no connection to the outside world. For the other, participants were allowed smartphones and given wi-fi codes, as well as music and novels. The only major rule in both sessions was they had to stay awake.***
“We set out to replicate behaviour in humans that previous animal studies had found after isolation,” said Towner. “We wanted to know about the experience of loneliness, and you can’t ask animals how lonely they feel.”
Self-reported loneliness increased from baseline after both sessions. It was lower on average after isolation with social media, compared to full isolation.****
However, participants found the threat cue – the shape paired with a jarring sound – more anxiety-inducing and unpleasant after both isolation sessions, with electrodes also measuring elevated stress activity.
On average across the study, threat responses were 70% higher after the isolation sessions compared to the baseline, regardless of whether participants had been interacting digitally.
“Although virtual social interactions helped our participants feel less lonely compared to total isolation, their heightened threat response remained,” said Towner.
Previous studies have found a link between chronic loneliness and alertness to threats. The latest findings support the idea that social isolation may directly contribute to heightened fear responses, say researchers.
Dr Livia Tomova, co-senior author and lecturer in Psychology at Cardiff University, who conducted the work while at Cambridge, added: “Loneliness among adolescents around the world has nearly doubled in recent years. The need for social interaction is especially intense during adolescence, but it is not clear whether online socialising can fulfil this need.
“This study has shown that digital interactions might not mitigate some of the deep-rooted effects that isolation appears to have on teenagers.”
Scientists say the findings might shed light on the link between loneliness and mental health conditions such as anxiety disorders, which are on the rise in young people.
Notes
*For example, in 2023 the U.S. Surgeon General declared an epidemic of loneliness and isolation.
**Electrodes placed on the fingers record small deflections in sweat and subsequent changes in electrical conductivity of the skin (electrodermal activity). Electrodermal activity is used to detect stress levels and increases with emotional or physical arousal.
***The baseline tests were always taken first. The order of the two isolation sessions was randomly allocated. For sessions with digital interactions allowed, most participants used social media (35 out of 40), with texting being the most common form of interaction (37 out of 40). Other popular platforms included Snapchat, Instagram, and WhatsApp. Participants mainly connected virtually with friends (38), followed by family (19), romantic partners (13), and acquaintances (4).
**** Average self-reported loneliness more than doubled after the isolation session with social media compared to baseline and nearly tripled after the complete isolation session compared to baseline.
As the world struggles to reduce greenhouse gas emissions, researchers are seeking practical, economical ways to capture carbon dioxide and convert it into useful products, such as transportation fuels, chemical feedstocks, or even building materials. But so far, such attempts have struggled to reach economic viability.New research by engineers at MIT could lead to rapid improvements in a variety of electrochemical systems that are under development to convert carbon dioxide into a valuable comm
As the world struggles to reduce greenhouse gas emissions, researchers are seeking practical, economical ways to capture carbon dioxide and convert it into useful products, such as transportation fuels, chemical feedstocks, or even building materials. But so far, such attempts have struggled to reach economic viability.
New research by engineers at MIT could lead to rapid improvements in a variety of electrochemical systems that are under development to convert carbon dioxide into a valuable commodity. The team developed a new design for the electrodes used in these systems, which increases the efficiency of the conversion process.
The findings are reported today in the journal Nature Communications, in a paper by MIT doctoral student Simon Rufer, professor of mechanical engineering Kripa Varanasi, and three others.
“The CO2 problem is a big challenge for our times, and we are using all kinds of levers to solve and address this problem,” Varanasi says. It will be essential to find practical ways of removing the gas, he says, either from sources such as power plant emissions, or straight out of the air or the oceans. But then, once the CO2 has been removed, it has to go somewhere.
A wide variety of systems have been developed for converting that captured gas into a useful chemical product, Varanasi says. “It’s not that we can’t do it — we can do it. But the question is how can we make this efficient? How can we make this cost-effective?”
In the new study, the team focused on the electrochemical conversion of CO2 to ethylene, a widely used chemical that can be made into a variety of plastics as well as fuels, and which today is made from petroleum. But the approach they developed could also be applied to producing other high-value chemical products as well, including methane, methanol, carbon monoxide, and others, the researchers say.
Currently, ethylene sells for about $1,000 per ton, so the goal is to be able to meet or beat that price. The electrochemical process that converts CO2 into ethylene involves a water-based solution and a catalyst material, which come into contact along with an electric current in a device called a gas diffusion electrode.
There are two competing characteristics of the gas diffusion electrode materials that affect their performance: They must be good electrical conductors so that the current that drives the process doesn’t get wasted through resistance heating, but they must also be “hydrophobic,” or water repelling, so the water-based electrolyte solution doesn’t leak through and interfere with the reactions taking place at the electrode surface.
Unfortunately, it’s a tradeoff. Improving the conductivity reduces the hydrophobicity, and vice versa. Varanasi and his team set out to see if they could find a way around that conflict, and after many months of work, they did just that.
The solution, devised by Rufer and Varanasi, is elegant in its simplicity. They used a plastic material, PTFE (essentially Teflon), that has been known to have good hydrophobic properties. However, PTFE’s lack of conductivity means that electrons must travel through a very thin catalyst layer, leading to significant voltage drop with distance. To overcome this limitation, the researchers wove a series of conductive copper wires through the very thin sheet of the PTFE.
“This work really addressed this challenge, as we can now get both conductivity and hydrophobicity,” Varanasi says.
Research on potential carbon conversion systems tends to be done on very small, lab-scale samples, typically less than 1-inch (2.5-centimeter) squares. To demonstrate the potential for scaling up, Varanasi’s team produced a sheet 10 times larger in area and demonstrated its effective performance.
To get to that point, they had to do some basic tests that had apparently never been done before, running tests under identical conditions but using electrodes of different sizes to analyze the relationship between conductivity and electrode size. They found that conductivity dropped off dramatically with size, which would mean much more energy, and thus cost, would be needed to drive the reaction.
“That’s exactly what we would expect, but it was something that nobody had really dedicatedly investigated before,” Rufer says. In addition, the larger sizes produced more unwanted chemical byproducts besides the intended ethylene.
Real-world industrial applications would require electrodes that are perhaps 100 times larger than the lab versions, so adding the conductive wires will be necessary for making such systems practical, the researchers say. They also developed a model which captures the spatial variability in voltage and product distribution on electrodes due to ohmic losses. The model along with the experimental data they collected enabled them to calculate the optimal spacing for conductive wires to counteract the drop off in conductivity.
In effect, by weaving the wire through the material, the material is divided into smaller subsections determined by the spacing of the wires. “We split it into a bunch of little subsegments, each of which is effectively a smaller electrode,” Rufer says. “And as we’ve seen, small electrodes can work really well.”
Because the copper wire is so much more conductive than the PTFE material, it acts as a kind of superhighway for electrons passing through, bridging the areas where they are confined to the substrate and face greater resistance.
To demonstrate that their system is robust, the researchers ran a test electrode for 75 hours continuously, with little change in performance. Overall, Rufer says, their system “is the first PTFE-based electrode which has gone beyond the lab scale on the order of 5 centimeters or smaller. It’s the first work that has progressed into a much larger scale and has done so without sacrificing efficiency.”
The weaving process for incorporating the wire can be easily integrated into existing manufacturing processes, even in a large-scale roll-to-roll process, he adds.
“Our approach is very powerful because it doesn’t have anything to do with the actual catalyst being used,” Rufer says. “You can sew this micrometric copper wire into any gas diffusion electrode you want, independent of catalyst morphology or chemistry. So, this approach can be used to scale anybody’s electrode.”
“Given that we will need to process gigatons of CO2 annually to combat the CO2 challenge, we really need to think about solutions that can scale,” Varanasi says. “Starting with this mindset enables us to identify critical bottlenecks and develop innovative approaches that can make a meaningful impact in solving the problem. Our hierarchically conductive electrode is a result of such thinking.”
The research team included MIT graduate students Michael Nitzsche and Sanjay Garimella, as well as Jack Lake PhD ’23. The work was supported by Shell, through the MIT Energy Initiative.
This work was carried out, in part, through the use of MIT.nano facilities.
Smart homes are intended to make life easier, but logging into individual devices is often still an onerous task. Researchers from ETH Zurich have investigated how everyday routines could be used for secure and user-friendly authentication – with no need for cumbersome passwords.
Smart homes are intended to make life easier, but logging into individual devices is often still an onerous task. Researchers from ETH Zurich have investigated how everyday routines could be used for secure and user-friendly authentication – with no need for cumbersome passwords.
By Prof Hsu Li Yang, Vice Dean of Global Health and Programme Leader for Infectious Diseases at the Saw Swee Hock School of Public Health at NUSThe Straits Times, 12 November 2024, Opinion, pB4
His Royal Highness Prince Turki Al Faisal (left) and Professor Tarek Masoud.Photo by Benn Craig
Nation & World
Former Saudi intelligence chief urges greater international role in Gaza war
Al Faisal calls for Israel to reduce civilian casualties, lays out plan for U.N.-brokered two-state solution
Alvin Powell
Harvard Staff Writer
November 12, 2024
5 min read
Editor’s note: This story h
Former Saudi intelligence chief urges greater international role in Gaza war
Al Faisal calls for Israel to reduce civilian casualties, lays out plan for U.N.-brokered two-state solution
Alvin Powell
Harvard Staff Writer
5 min read
Editor’s note:This story has been updated to correct the death toll in Gaza. The territory’s health ministry reports that more than 40,000 Palestinians have been killed in the conflict, but it does not distinguish between civilian and combatant deaths. Israel says it has killed more than 17,000 militants.
A former Saudi Arabian intelligence chief called international inaction in Gaza “criminal” and called on Israel’s sophisticated military to employ more targeted methods to reduce civilian deaths in its conflict with Hamas.
“What we need there is for both sides — not just the Israelis but also the Arabs — to say enough is enough and to turn to wiser heads and more capable leadership around the world to bring an end to the cycle of tit for tat and death for death and destruction for destruction,” said His Royal Highness Prince Turki Al Faisal, who served for 24 years as head of the Saudi Arabian Intelligence Presidency before stepping down in 2001.
Al Faisal, current chair of the King Faisal Center for Research and Islamic Studies in Riyadh, also proposed a U.N.-brokered process for a two-state solution during the Middle East Initiative’s “Middle East Dialogues” last Thursday at the Harvard Kennedy School. Hosted by Tarek Masoud, the initiative’s faculty chair, the series brings prominent actors from across the Middle East to discuss the war in Gaza and broader regional issues.
“This is something we began at Harvard last year to bring to this University genuine, candid, open conversations with people who hold wildly varied but widely shared views on the conflict between Israel and Palestine, the causes of that conflict and how it might be brought to an end,” said Masoud, who is also the Ford Foundation Professor of Democracy and Governance, as he introduced the event, the first of this school year.
Al Faisal, a member of the Saudi royal family and former ambassador to the U.S. and U.K., said that Hamas — whose Oct. 7, 2023, attack on Israel sparked the war — is a terrorist group, but argued that if Hamas mingles with civilians and digs tunnels under hospitals and mosques, Israeli soldiers should fight in the tunnels, not bomb indiscriminately.
Al Faisal called for establishment of a Palestinian state with its capital in Jerusalem to resolve the conflict as part of the creation of a two-state solution, with talks guided by the United Nations and participation of global powers.
“Part of the U.N. setup would be an article to come out in the United Nations Security Council resolution barring anybody on the side of the Palestinians and Israelis who does not accept a two-state solution from being in negotiations for a two-state solution,” Al Faisal said, adding that that would include even major players like Hamas and Hezbollah. “A mechanism should be put in place to get only those committed to the principle of peace between Arabs and Israelis to be party to the negotiations.”
Masoud described Al Faisal as “one of the broadest minds in our region, if not our planet” and as “not just a witness to history, but a shaper of it.”
Despite repeated calls for peace, the war has killed thousands of civilians and displaced hundreds of thousands. It has expanded in recent months into southern Lebanon after Iran-backed Hezbollah repeatedly fired rockets into Israel. Concerns about the war widening further have risen as Israel and Iran exchanged rocket fire.
In response to Masoud’s questions, Al Faisal said the ongoing fighting is planting seeds of anguish and anger among today’s children in Gaza. Those seeds will fuel the continuation of the long-running cycle of violence that has plagued the region.
“My view is even one death on both sides is not worth the destruction that is taking place,” Al Faisal said. “There is a verse in the Quran which says, ‘The killing of an innocent person is like killing all mankind.’ That is the attitude I think a state with the recognition that Israel has in the world should take into consideration.”
Al Faisal also addressed Saudi Arabia’s approach to relations with Israel, saying normalization by other nations like Egypt and Jordan has had no impact on the fighting, so Saudi Arabia shouldn’t pursue it until the fighting has concluded, and a Palestinian state is assured.
Asked why Saudi Arabia hasn’t responded as it did to U.S. support for Israel in the 1973 Arab-Israeli War, when it imposed a painful oil embargo, Al Faisal said that times have changed. Such an approach today would be ineffective, he said, largely because the U.S. has become a major oil-producing nation.
Prior speakers in the Dialogues series included Jared Kushner, former senior adviser to former President Donald Trump; Matt Duss, executive director of the Center for International Policy and former foreign policy adviser to Vermont Sen. Bernie Sanders; Salam Fayyad, former prime minister of the Palestinian Authority; and Einat Wilf, a political scientist and former member of the Knesset.
Al Faisal also addressed broader issues outside the conflict and praised the recent loosening of cultural rules in the kingdom and its more welcoming approach to outsiders. He also said there are opportunities for the U.S. and Saudi Arabia to cooperate more. Saudi Arabia is a significant provider of international aid, he said, and together the two could make a difference on international poverty.
“We are an evolving country, like all countries are,” Al Faisal said. “It’s not going to be a matter of a top-down decree on what to do, but rather an integration of the sense of what people want and what leadership can provide them.”
Tarek Masoud, organizer of Middle East Dialogues, wanted to show that Harvard could confront the tensions around Israel-Gaza without vitriol or shouting. So far, it’s worked.
Imagine using artificial intelligence to compare two seemingly unrelated creations — biological tissue and Beethoven’s “Symphony No. 9.” At first glance, a living system and a musical masterpiece might appear to have no connection. However, a novel AI method developed by Markus J. Buehler, the McAfee Professor of Engineering and professor of civil and environmental engineering and mechanical engineering at MIT, bridges this gap, uncovering shared patterns of complexity and order.“By blending gen
Imagine using artificial intelligence to compare two seemingly unrelated creations — biological tissue and Beethoven’s “Symphony No. 9.” At first glance, a living system and a musical masterpiece might appear to have no connection. However, a novel AI method developed by Markus J. Buehler, the McAfee Professor of Engineering and professor of civil and environmental engineering and mechanical engineering at MIT, bridges this gap, uncovering shared patterns of complexity and order.
“By blending generative AI with graph-based computational tools, this approach reveals entirely new ideas, concepts, and designs that were previously unimaginable. We can accelerate scientific discovery by teaching generative AI to make novel predictions about never-before-seen ideas, concepts, and designs,” says Buehler.
The open-access research, recently published in Machine Learning: Science and Technology, demonstrates an advanced AI method that integrates generative knowledge extraction, graph-based representation, and multimodal intelligent graph reasoning.
The work uses graphs developed using methods inspired by category theory as a central mechanism to teach the model to understand symbolic relationships in science. Category theory, a branch of mathematics that deals with abstract structures and relationships between them, provides a framework for understanding and unifying diverse systems through a focus on objects and their interactions, rather than their specific content. In category theory, systems are viewed in terms of objects (which could be anything, from numbers to more abstract entities like structures or processes) and morphisms (arrows or functions that define the relationships between these objects). By using this approach, Buehler was able to teach the AI model to systematically reason over complex scientific concepts and behaviors. The symbolic relationships introduced through morphisms make it clear that the AI isn't simply drawing analogies, but is engaging in deeper reasoning that maps abstract structures across different domains.
Buehler used this new method to analyze a collection of 1,000 scientific papers about biological materials and turned them into a knowledge map in the form of a graph. The graph revealed how different pieces of information are connected and was able to find groups of related ideas and key points that link many concepts together.
“What’s really interesting is that the graph follows a scale-free nature, is highly connected, and can be used effectively for graph reasoning,” says Buehler. “In other words, we teach AI systems to think about graph-based data to help them build better world representations models and to enhance the ability to think and explore new ideas to enable discovery.”
Researchers can use this framework to answer complex questions, find gaps in current knowledge, suggest new designs for materials, and predict how materials might behave, and link concepts that had never been connected before.
The AI model found unexpected similarities between biological materials and “Symphony No. 9,” suggesting that both follow patterns of complexity. “Similar to how cells in biological materials interact in complex but organized ways to perform a function, Beethoven's 9th symphony arranges musical notes and themes to create a complex but coherent musical experience,” says Buehler.
In another experiment, the graph-based AI model recommended creating a new biological material inspired by the abstract patterns found in Wassily Kandinsky’s painting, “Composition VII.” The AI suggested a new mycelium-based composite material. “The result of this material combines an innovative set of concepts that include a balance of chaos and order, adjustable property, porosity, mechanical strength, and complex patterned chemical functionality,” Buehler notes. By drawing inspiration from an abstract painting, the AI created a material that balances being strong and functional, while also being adaptable and capable of performing different roles. The application could lead to the development of innovative sustainable building materials, biodegradable alternatives to plastics, wearable technology, and even biomedical devices.
With this advanced AI model, scientists can draw insights from music, art, and technology to analyze data from these fields to identify hidden patterns that could spark a world of innovative possibilities for material design, research, and even music or visual art.
“Graph-based generative AI achieves a far higher degree of novelty, explorative of capacity and technical detail than conventional approaches, and establishes a widely useful framework for innovation by revealing hidden connections,” says Buehler. “This study not only contributes to the field of bio-inspired materials and mechanics, but also sets the stage for a future where interdisciplinary research powered by AI and knowledge graphs may become a tool of scientific and philosophical inquiry as we look to other future work.”
“Markus Buehler’s analysis of papers on bioinspired materials transformed gigabytes of information into knowledge graphs representing the connectivity of various topics and disciplines,” says Nicholas Kotov, the Irving Langmuir Distinguished Professor of Chemical Sciences and Engineering at the University of Michigan, who was not involved with this work. “These graphs can be used as information maps that enable us to identify central topics, novel relationships, and potential research directions by exploring complex linkages across subsections of the bioinspired and biomimetic materials. These and other graphs like that are likely to be an essential research tool for current and future scientists.”
Imagine using artificial intelligence to compare two seemingly unrelated creations — biological tissue and Beethoven’s “Symphony No. 9.” At first glance, a living system and a musical masterpiece might appear to have no connection. However, a novel AI method developed by Markus J. Buehler, the McAfee Professor of Engineering and professor of civil and environmental engineering and mechanical engineering at MIT, bridges this gap, uncovering shared patterns of complexity and order.“By blending gen
Imagine using artificial intelligence to compare two seemingly unrelated creations — biological tissue and Beethoven’s “Symphony No. 9.” At first glance, a living system and a musical masterpiece might appear to have no connection. However, a novel AI method developed by Markus J. Buehler, the McAfee Professor of Engineering and professor of civil and environmental engineering and mechanical engineering at MIT, bridges this gap, uncovering shared patterns of complexity and order.
“By blending generative AI with graph-based computational tools, this approach reveals entirely new ideas, concepts, and designs that were previously unimaginable. We can accelerate scientific discovery by teaching generative AI to make novel predictions about never-before-seen ideas, concepts, and designs,” says Buehler.
The open-access research, recently published in Machine Learning: Science and Technology, demonstrates an advanced AI method that integrates generative knowledge extraction, graph-based representation, and multimodal intelligent graph reasoning.
The work uses graphs developed using methods inspired by category theory as a central mechanism to teach the model to understand symbolic relationships in science. Category theory, a branch of mathematics that deals with abstract structures and relationships between them, provides a framework for understanding and unifying diverse systems through a focus on objects and their interactions, rather than their specific content. In category theory, systems are viewed in terms of objects (which could be anything, from numbers to more abstract entities like structures or processes) and morphisms (arrows or functions that define the relationships between these objects). By using this approach, Buehler was able to teach the AI model to systematically reason over complex scientific concepts and behaviors. The symbolic relationships introduced through morphisms make it clear that the AI isn't simply drawing analogies, but is engaging in deeper reasoning that maps abstract structures across different domains.
Buehler used this new method to analyze a collection of 1,000 scientific papers about biological materials and turned them into a knowledge map in the form of a graph. The graph revealed how different pieces of information are connected and was able to find groups of related ideas and key points that link many concepts together.
“What’s really interesting is that the graph follows a scale-free nature, is highly connected, and can be used effectively for graph reasoning,” says Buehler. “In other words, we teach AI systems to think about graph-based data to help them build better world representations models and to enhance the ability to think and explore new ideas to enable discovery.”
Researchers can use this framework to answer complex questions, find gaps in current knowledge, suggest new designs for materials, and predict how materials might behave, and link concepts that had never been connected before.
The AI model found unexpected similarities between biological materials and “Symphony No. 9,” suggesting that both follow patterns of complexity. “Similar to how cells in biological materials interact in complex but organized ways to perform a function, Beethoven's 9th symphony arranges musical notes and themes to create a complex but coherent musical experience,” says Buehler.
In another experiment, the graph-based AI model recommended creating a new biological material inspired by the abstract patterns found in Wassily Kandinsky’s painting, “Composition VII.” The AI suggested a new mycelium-based composite material. “The result of this material combines an innovative set of concepts that include a balance of chaos and order, adjustable property, porosity, mechanical strength, and complex patterned chemical functionality,” Buehler notes. By drawing inspiration from an abstract painting, the AI created a material that balances being strong and functional, while also being adaptable and capable of performing different roles. The application could lead to the development of innovative sustainable building materials, biodegradable alternatives to plastics, wearable technology, and even biomedical devices.
With this advanced AI model, scientists can draw insights from music, art, and technology to analyze data from these fields to identify hidden patterns that could spark a world of innovative possibilities for material design, research, and even music or visual art.
“Graph-based generative AI achieves a far higher degree of novelty, explorative of capacity and technical detail than conventional approaches, and establishes a widely useful framework for innovation by revealing hidden connections,” says Buehler. “This study not only contributes to the field of bio-inspired materials and mechanics, but also sets the stage for a future where interdisciplinary research powered by AI and knowledge graphs may become a tool of scientific and philosophical inquiry as we look to other future work.”
“Markus Buehler’s analysis of papers on bioinspired materials transformed gigabytes of information into knowledge graphs representing the connectivity of various topics and disciplines,” says Nicholas Kotov, the Irving Langmuir Distinguished Professor of Chemical Sciences and Engineering at the University of Michigan, who was not involved with this work. “These graphs can be used as information maps that enable us to identify central topics, novel relationships, and potential research directions by exploring complex linkages across subsections of the bioinspired and biomimetic materials. These and other graphs like that are likely to be an essential research tool for current and future scientists.”
Health
Study pinpoints optimal timing for RSV vaccine during pregnancy
Five weeks before giving birth best transfers maternal antibodies to the fetus, say researchers
MGB Communications
November 12, 2024
4 min read
To better protect newborns from respiratory syncytial virus (RSV), the leading cause of hospitalization in U.S. infants, pregnant women should receive a vaccine five weeks before delive
Study pinpoints optimal timing for RSV vaccine during pregnancy
Five weeks before giving birth best transfers maternal antibodies to the fetus, say researchers
MGB Communications
4 min read
To better protect newborns from respiratory syncytial virus (RSV), the leading cause of hospitalization in U.S. infants, pregnant women should receive a vaccine five weeks before delivery, according to new research led by investigators at Mass General Brigham.
RSV typically causes mild, cold-like symptoms in most adults but can be deadly for infants. While current guidelines recommend a vaccine during weeks 32–36 of pregnancy, new findings suggest that vaccination closer to 32 weeks could provide the best protection. Results of the study are published in the American Journal of Obstetrics & Gynecology.
To assess whether maternal vaccine timing is an important consideration for RSV vaccination, the investigators measured RSV antibodies in the umbilical cord at the time of delivery among 124 women who received the RSV vaccine during weeks 32–36 of pregnancy and in the blood of 29 2-month-old infants of these mothers.
All study participants were receiving care at MGH or Mount Sinai Health System in New York City. Levels of RSV antibodies can predict protection against RSV infection in infants too young to yet receive their own vaccines.
The investigators found that maternal RSV vaccination at least five weeks before delivery led to the most efficient transfer of maternal antibodies across the placenta to the newborn, compared with maternal vaccination at two to three or three to four weeks prior to delivery.
In an additional analysis, RSV antibody levels in maternal and cord blood after RSV vaccination were compared with RSV antibody levels in 20 unvaccinated mothers. Maternal RSV vaccination resulted in significantly higher and longer-lasting maternal and cord RSV antibody levels.
“Our findings suggest that being vaccinated earlier within the approved timeframe allows for the most efficient placental transfer of antibody to the newborn,” said senior author Andrea Edlow, a maternal-fetal medicine specialist in the Department of Obstetrics and Gynecology at Massachusetts General Hospital. “They also may have implications for when the RSV monoclonal antibody, Nirsevimab, should be administered to newborns. Similar research should be conducted for other vaccines administered during pregnancy.
“This work provides much-needed data to guide physicians in counseling patients about RSV vaccine timing during pregnancy,” Edlow added.
The investigators noted that additional studies are needed to determine the minimum amount of antibody transfer and/or infant blood antibody levels to adequately protect infants against RSV. It will also be important to understand the potential additive protection for infants provided by breastmilk from RSV-vaccinated mothers. This study was designed to measure antibody transfer, but larger studies of infants 2 to 6 months of age will be needed to determine the extent to which this leads to enhanced protection.
Disclosures: Outside of this work, Edlow serves as a consultant for Mirvie, Inc. and is a consultant for and has received research funding from Merck Pharmaceuticals. Additional disclosures can be found in the paper.
Authorship: In addition to Edlow, Mass General Brigham authors include Olyvia J. Jasset, Paola Andrea Lopez Zapana, Lydia Shook, Emily Gilbert, Zhaojing Ariel Liu, Rachel V. Yinger, Caroline Bald, Caroline G. Bradford, Alexa H. Silfen, and Lael M. Yonker.
This work was funded by National Institute of Allergy and Infectious Disease (1U19AI167899, R01AI171980), the National Institute of Child Health and Human Development (5K12HD103096 to L.L.S; NIH/NHLBI: R01HL173059 to L.Y.; MGH ECOR: MGH Research Scholar Award to A.G.E., Claflin Award to L.L.S.; Binational Science Foundation Award number 2019075 to L.K.) None of the funders had any role in the design of the study; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.
The oldest film in Penn’s University Archives Records Center documents the 1915 football game featuring Penn versus Cornell, played on Thanksgiving Day in front of a packed crowd at Franklin Field. Penn plays Cornell Nov. 9 in their 130th meeting.
The oldest film in Penn’s University Archives Records Center documents the 1915 football game featuring Penn versus Cornell, played on Thanksgiving Day in front of a packed crowd at Franklin Field. Penn plays Cornell Nov. 9 in their 130th meeting.
Researchers at ETH Zurich have combined two gene editing methods. This enables them to quickly investigate the significance of many genetic mutations involved in the development and treatment of cancer.
Researchers at ETH Zurich have combined two gene editing methods. This enables them to quickly investigate the significance of many genetic mutations involved in the development and treatment of cancer.
There’s no doubt that exercise does a body good. Regular activity not only strengthens muscles but can bolster our bones, blood vessels, and immune system.Now, MIT engineers have found that exercise can also have benefits at the level of individual neurons. They observed that when muscles contract during exercise, they release a soup of biochemical signals called myokines. In the presence of these muscle-generated signals, neurons grew four times farther compared to neurons that were not exposed
There’s no doubt that exercise does a body good. Regular activity not only strengthens muscles but can bolster our bones, blood vessels, and immune system.
Now, MIT engineers have found that exercise can also have benefits at the level of individual neurons. They observed that when muscles contract during exercise, they release a soup of biochemical signals called myokines. In the presence of these muscle-generated signals, neurons grew four times farther compared to neurons that were not exposed to myokines. These cellular-level experiments suggest that exercise can have a significant biochemical effect on nerve growth.
Surprisingly, the researchers also found that neurons respond not only to the biochemical signals of exercise but also to its physical impacts. The team observed that when neurons are repeatedly pulled back and forth, similarly to how muscles contract and expand during exercise, the neurons grow just as much as when they are exposed to a muscle’s myokines.
While previous studies have indicated a potential biochemical link between muscle activity and nerve growth, this study is the first to show that physical effects can be just as important, the researchers say. The results, which are published today in the journal Advanced Healthcare Materials, shed light on the connection between muscles and nerves during exercise, and could inform exercise-related therapies for repairing damaged and deteriorating nerves.
“Now that we know this muscle-nerve crosstalk exists, it can be useful for treating things like nerve injury, where communication between nerve and muscle is cut off,” says Ritu Raman, the Eugene Bell Career Development Assistant Professor of Mechanical Engineering at MIT. “Maybe if we stimulate the muscle, we could encourage the nerve to heal, and restore mobility to those who have lost it due to traumatic injury or neurodegenerative diseases.”
Raman is the senior author of the new study, which includes Angel Bu, Ferdows Afghah, Nicolas Castro, Maheera Bawa, Sonika Kohli, Karina Shah, and Brandon Rios of MIT’s Department of Mechanical Engineering, and Vincent Butty of MIT’s Koch Institute for Integrative Cancer Research.
Muscle talk
In 2023, Raman and her colleagues reported that they could restore mobility in mice that had experienced a traumatic muscle injury, by first implanting muscle tissue at the site of injury, then exercising the new tissue by stimulating it repeatedly with light. Over time, they found that the exercised graft helped mice to regain their motor function, reaching activity levels comparable to those of healthy mice.
When the researchers analyzed the graft itself, it appeared that regular exercise stimulated the grafted muscle to produce certain biochemical signals that are known to promote nerve and blood vessel growth.
“That was interesting because we always think that nerves control muscle, but we don’t think of muscles talking back to nerves,” Raman says. “So, we started to think stimulating muscle was encouraging nerve growth. And people replied that maybe that’s the case, but there’s hundreds of other cell types in an animal, and it’s really hard to prove that the nerve is growing more because of the muscle, rather than the immune system or something else playing a role.”
In their new study, the team set out to determine whether exercising muscles has any direct effect on how nerves grow, by focusing solely on muscle and nerve tissue. The researchers grew mouse muscle cells into long fibers that then fused to form a small sheet of mature muscle tissue about the size of a quarter.
The team genetically modified the muscle to contract in response to light. With this modification, the team could flash a light repeatedly, causing the muscle to squeeze in response, in a way that mimicked the act of exercise. Raman previously developed a novel gel mat on which to grow and exercise muscle tissue. The gel’s properties are such that it can support muscle tissue and prevent it from peeling away as the researchers stimulated the muscle to exercise.
The team then collected samples of the surrounding solution in which the muscle tissue was exercised, thinking that the solution should hold myokines, including growth factors, RNA, and a mix of other proteins.
“I would think of myokines as a biochemical soup of things that muscles secrete, some of which could be good for nerves and others that might have nothing to do with nerves,” Raman says. “Muscles are pretty much always secreting myokines, but when you exercise them, they make more.”
“Exercise as medicine”
The team transferred the myokine solution to a separate dish containing motor neurons — nerves found in the spinal cord that control muscles involved in voluntary movement. The researchers grew the neurons from stem cells derived from mice. As with the muscle tissue, the neurons were grown on a similar gel mat. After the neurons were exposed to the myokine mixture, the team observed that they quickly began to grow, four times faster than neurons that did not receive the biochemical solution.
“They grow much farther and faster, and the effect is pretty immediate,” Raman notes.
For a closer look at how neurons changed in response to the exercise-induced myokines, the team ran a genetic analysis, extracting RNA from the neurons to see whether the myokines induced any change in the expression of certain neuronal genes.
“We saw that many of the genes up-regulated in the exercise-stimulated neurons was not only related to neuron growth, but also neuron maturation, how well they talk to muscles and other nerves, and how mature the axons are,” Raman says. “Exercise seems to impact not just neuron growth but also how mature and well-functioning they are.”
The results suggest that biochemical effects of exercise can promote neuron growth. Then the group wondered: Could exercise’s purely physical impacts have a similar benefit?
“Neurons are physically attached to muscles, so they are also stretching and moving with the muscle,” Raman says. “We also wanted to see, even in the absence of biochemical cues from muscle, could we stretch the neurons back and forth, mimicking the mechanical forces (of exercise), and could that have an impact on growth as well?”
To answer this, the researchers grew a different set of motor neurons on a gel mat that they embedded with tiny magnets. They then used an external magnet to jiggle the mat — and the neurons — back and forth. In this way, they “exercised” the neurons, for 30 minutes a day. To their surprise, they found that this mechanical exercise stimulated the neurons to grow just as much as the myokine-induced neurons, growing significantly farther than neurons that received no form of exercise.
“That’s a good sign because it tells us both biochemical and physical effects of exercise are equally important,” Raman says.
Now that the group has shown that exercising muscle can promote nerve growth at the cellular level, they plan to study how targeted muscle stimulation can be used to grow and heal damaged nerves, and restore mobility for people who are living with a neurodegenerative disease such as ALS.
“This is just our first step toward understanding and controlling exercise as medicine,” Raman says.
Whether it is providing academic support to vulnerable youth or befriending seniors living alone, heartwarming stories of NUS students working to uplift local and regional communities abound each year. Embodying the University’s spirit of service to country and society, members of the NUS Community Service Club (NUS CSC) have been key drivers of volunteerism among our student population over the past 22 years. Through NUS CSC programmes, more than 1,300 NUS students clocked close to 15,500 volu
Whether it is providing academic support to vulnerable youth or befriending seniors living alone, heartwarming stories of NUS students working to uplift local and regional communities abound each year. Embodying the University’s spirit of service to country and society, members of the NUS Community Service Club (NUS CSC) have been key drivers of volunteerism among our student population over the past 22 years.
Through NUS CSC programmes, more than 1,300 NUS students clocked close to 15,500 volunteer hours in the last academic year. Three of the club’s members share what inspired their passion for service, the various ways they are making a difference in the community and how their efforts have enriched the lives of many – including their own.
Dewi Murni Bte Musa: Leading change through community service
Dewi Murni Bte Musa, a Year 4 student at the NUS Faculty of Science, began volunteering at the age of 16. But it was a seemingly ordinary day chaperoning primary school students for a national education show in 2018, held in conjunction with Singapore’s National Day Parade, that ignited her passion for community service.
At the end of the show, a primary schooler, beaming with excitement, thanked her for the day he had and told her that he aspired to be like her in the future. “It was a touching moment that made me realise the power of making someone’s day,” said Dewi, recalling that pivotal moment.
Since then, Dewi has dedicated herself to various community projects, both within and beyond Singapore. Now, in her fourth year at NUS CSC, Dewi has been elected the Club’s president, and set her sights on making an even bigger impact.
Reflecting on her time at NUS CSC, Dewi shared that her involvement in various programmes and projects played a significant role in her personal development. For example, as former Assistant Project Director, Dewi led a team of nearly 160 volunteers in Project C.A.N. XXI to prepare specially curated care packs containing food and essential items for low-income households in Choa Chu Kang and Tampines. The massive undertaking sharpened her organisational skills and taught her the importance of adaptability in team dynamics.
Yet, it was her moments of connection with community members at one NUS CSC Day that stood out most vividly to her. The annual event brings together NUS CSC’s four main sectors – children and youth, persons with intellectual disabilities, the elderly and those with life-limiting illnesses and healthcare. As a game master for the day, Dewi met a secondary school student from one of their partner organisations who told her that it felt like a dream to come to NUS. Her words struck a chord with Dewi who was reminded of her own childhood, when a university education seemed like an unattainable dream. “I’m the first in my extended family to attend university, so growing up, I didn’t really have anyone to talk to about getting a higher education,” she said. “But I was so happy that through CSC Day, we were able to give this young girl that opportunity,” she added.
Empowerment for youth and children is a cause that resonates with Dewi deeply, and she aspires to one day, build a passion project working with schools in rural areas, particularly in Indonesia, where she is fluent in the language and familiar with the culture.
As the incoming president of NUS CSC, Dewi envisions a club that not only mobilises volunteers but also fosters leadership and personal growth for its members. “We want to ensure that our volunteers are adequately prepared before they engage with community members and cultivate an environment where they can thrive as volunteer leaders,” she said. “I also want to see our club evolve to meet the changing needs of both our volunteers and the community.”
For those considering joining NUS CSC, Dewi encourages them to embrace the experience with an open mind and a willingness to learn. “It’s all about stepping out of your comfort zone and discovering the impact you can make,” she says, inviting new volunteers to share in the transformative power of community service.
Lim Si En: Painting lives, one home at a time
Like Dewi, Lim Si En, a Year 3 student at the NUS Faculty of Arts and Social Sciences (FASS), began his volunteering journey in junior college, tutoring primary school students and volunteering his time at national events like the National Day Parade. His passion for service led him to join NUS CSC in his first year at NUS. “Volunteering called out to me more than other CCAs,” he recalled, highlighting the breadth and accessibility of projects that resonate with his desire to help others.
In his second year, Si En took on the role of Project Director for NUS CSC’s annual Paint-A-Home initiative, pouring his heart into every detail of the six-month-long project, from recruiting committee members to collaborating with partner organisations. “Seeing our labour pay off was incredibly fulfilling,” he says, reflecting on the tangible improvements made in the homes they painted.
For Si En, the initiative was more than just applying a fresh coat of paint; it was about building relationships with community members to understand their needs and preferences, ensuring that his team’s work truly reflected the desires of those they served.
“The initial visit helped break the ice and build rapport,” he explained. This rapport was crucial, as many of the community members they assisted were elderly or from low-income families, facing various challenges. As Si En and most of his team members had no prior experience with painting, they contacted an organisation for painting lessons. The team also held a practice run, painting the multipurpose hall at the PERTAPIS Centre for Women and Girls, which kindly offered them use of the space for a trial session.
“Once we finished painting, the visible improvement felt great. We knew we made a difference,” he shared, acknowledging that their work wasn’t perfect but was heartfelt and impactful.
Si En’s commitment to the community extends beyond NUS CSC. As a Volunteer Welfare Officer with the Ministry of Social and Family Development since 2023, he conducts check-ins with families at risk of child neglect. “It’s an eye-opening experience,” he admits. “Even as I help others, I learn so much about the challenges they face.”
Hope Sng Xin Le: A heart for service
Taking over the reins from Si En at Clementi Youth Sparks this semester is Hope Sng Xin Le, a Year 2 NUS FASS student who embodies the spirit of service and compassion. Specialising in Social Work and Political Science, Hope’s journey into the realm of social service is deeply rooted in her own experiences and the values instilled in her by her family.
Growing up, Hope faced some challengesin her childhood. “My grandparents helped me through that tough time,” she recalled, citing this early experience as the spark that ignited her passion for social work.
Another source of inspiration was a documentary that highlighted how exposure to domestic violence can ripple through generations. “It’s important to break the cycle of violence,” she remarked.
Hope’s academic pursuits complement her passion. Studying Political Science gives her insight into governmental structures and resource allocation, while her Social Work studies provide a ground-level perspective on societal issues. “Social work is where my calling is,” she says, expressing a desire to join Child or Adult Protective Services upon graduation to safeguard vulnerable individuals and families.
Hope’s commitment to volunteering blossomed at NUS, where she joined NUS CSC in her first year. At Ethelontêr, the NUS CSC’s orientation camp for incoming NUS students, she was introduced to various volunteer opportunities, including Havenue, a programme supporting individuals with life-limiting illnesses. “Havenue is my happy place,” she states with warmth, volunteering there two to three times a month.
Her work at Havenue holds a profound significance for her. Engaging with the elderly patients has reshaped her perspective on life and death. One particularly poignant memory is of Uncle Chew, a vibrant 90-year-old she befriended during his last days. His passing, along with that of another patient, reminded her of life’s fragility and the importance of cherishing every moment. “These experiences have shown me how precious life is,” she reflects, prompting her to be more expressive of her love and appreciation for those around her.
In Academic Year 2023/2024, Hope served the highest number of volunteer hours among all NUS CSC volunteers, staggering her time between seven projects throughout the year. Pulling off the 2024 edition of Ethelontêr as Assistant Project Director is something she is particularly proud of and she expressed her deep appreciation for her fellow organising committee members for being a strong support system during the five-month project where things were ‘fast and furious’.
“Prior to university, I thought of volunteering as something that was part of the school requirements. But over the past year, I realised my deeper calling to serve the community. It has strengthened my desire to pursue social work as a major and has been a source of joy and meaning in my life,” said Hope.
University of Melbournes Dookie campus has been significantly enhanced following the completion of the $21 million Dookie Campus Student Accommodation project.
University of Melbournes Dookie campus has been significantly enhanced following the completion of the $21 million Dookie Campus Student Accommodation project.
NUS Enterprise, the entrepreneurial arm of NUS, has expanded its global presence with the launch of BLOCK71 Nagoya. Officially inaugurated on 10 October 2024 by Mr Heng Swee Keat, Deputy Prime Minister of Singapore, BLOCK71 Nagoya is the first BLOCK71 location in Japan, strengthening a global BLOCK71 network that spans Southeast Asia, the United States, and China. The new office aims to create a technology-focused ecosystem connecting Japan and Southeast Asia, providing Southeast Asian start-ups
NUS Enterprise, the entrepreneurial arm of NUS, has expanded its global presence with the launch of BLOCK71 Nagoya. Officially inaugurated on 10 October 2024 by Mr Heng Swee Keat, Deputy Prime Minister of Singapore, BLOCK71 Nagoya is the first BLOCK71 location in Japan, strengthening a global BLOCK71 network that spans Southeast Asia, the United States, and China. The new office aims to create a technology-focused ecosystem connecting Japan and Southeast Asia, providing Southeast Asian start-ups with the support needed to navigate Japan’s cultural and business nuances, and helping Japanese start-ups scale and grow across Southeast Asia.
This milestone strengthens NUS’ long-standing partnership with the Aichi government and the city of Nagoya. The collaboration between NUS and Aichi dates back to 2018, with joint efforts focusing on driving cross-border innovation and entrepreneurship. Key initiatives include the NUS Summer Programme in Entrepreneurship, Asia’s largest university start-up showcase InnovFest, and the NUS Enterprise Market Immersion Programme in Japan which was launched last year. The opening of BLOCK71 Nagoya is the latest chapter in this collaboration and reflects a shared commitment to nurturing vibrant start-up ecosystems in both countries.
Following its official inauguration, BLOCK71 Nagoya opened its doors to start-ups on 1 November 2024, providing a dedicated space for entrepreneurs to collaborate, innovate, and access essential resources. The operational opening of the centre was graced by His Excellency Hideaki Omura, the Governor of Aichi Prefecture, who was joined by NUS President Professor Tan Eng Chye; Associate Professor Benjamin Tee, Vice President (Ecosystem Building), NUS Enterprise; Professor Naoshi Sugiyama, President of Nagoya University; and Mr Hirotaka Sahashi, President and CEO of STATION Ai Corporation.
Unlike other BLOCK71 global offices that focus on incubation, BLOCK71 in Japan prioritises market launch activities due to the country’s mature start-up landscape. BLOCK71 Nagoya and other future Japanese offices will support start-ups in developing Proof of Concept (PoC), securing funding, establishing partnerships, and integrating into the BLOCK71 global network. Beyond providing physical workspaces within partners’ co-working facilities, BLOCK71 in Japan will deploy dedicated staff across key cities to identify growth opportunities and help start-ups capitalise on Japan’s multifaceted market environment.
“Japan’s business environment is renowned for its rich traditions, strong emphasis on relationships, and high standards. Through BLOCK71 in Japan, we aim to empower Southeast Asian entrepreneurs to navigate this unique market, while simultaneously supporting Japanese start-ups in exploring opportunities in Southeast Asia. Located within STATION Ai, the largest start-up support centre in Japan, BLOCK71 Nagoya is well-positioned to cultivate a global ecosystem that fosters cross-border innovation. Our focus is on providing comprehensive business support, facilitating meaningful partnerships, and developing strategic roadmaps for growth that will benefit all involved,” said Prof Tan.
Prof Chen Tsuhan, NUS Deputy President (Innovation and Enterprise), highlighted the valuable resources available at BLOCK71 Nagoya. “By leveraging BLOCK71’s extensive global network and over a decade of experience in catalysing start-up communities, start-ups in Nagoya will have access to crucial resources such as technology, talent, markets and funding opportunities between Singapore and Japan. This new hub will not only support local start-ups but also attract international talent to Aichi, contributing to a vibrant, globally connected start-up environment. Additionally, BLOCK71 Nagoya will support start-ups in refining their go-to-market and fundraising strategies, which are essential for successful international expansion.”
Collaboration with ENEOS to enhance innovation
In addition to the launch of BLOCK71 Nagoya, NUS has formed a strategic partnership with ENEOS Holdings, Inc. (ENEOS), one of Japan’s largest energy companies, on 31 October 2024. This collaboration aims to enhance venture-building activities for NUS start-ups by exposing them to real-world industry challenges. Together, NUS Enterprise and ENEOS will work together to identify promising Southeast Asian start-ups and innovative solutions that can tackle critical industry issues relating to mobility, decarbonisation, the circular economy, and artificial intelligence.
"Collaborating with NUS Enterprise provides ENEOS with a unique opportunity to harness the dynamic energy of Southeast Asia's start-up ecosystem,” said Mr Miyata Tomohide, Representative Director, CEO of ENEOS. “By engaging with innovative start-ups, we can gain fresh insights and co-create solutions that address the pressing challenges in our industry. This partnership will not only enhance our ability to adapt to market changes but also position us at the forefront of sustainable energy advancements. We are eager to work alongside these visionary entrepreneurs to drive meaningful progress in the energy sector.”
Assimilating to the Japanese social fabric via the Market Immersion Programme
Recognising Japan’s culturally distinct business environment, BLOCK71 launched the Japan Immersion Programme last year to provide tailored support for Southeast Asian start-ups to better understand the Japanese market. The programme is structured in two phases: a pre-programme held in Singapore and an immersion phase in Japan.
From mid-August to the end of September 2024, the second cohort of five Singaporean start-ups participated in a series of lectures and mentorship sessions during the pre-programme. These activities equipped them with essential skills for developing their go-to-market (GTM) strategies and effective fundraising techniques to support their market expansion in Japan.
The immersion phase, during which the five start-ups engaged directly with potential Japanese partners, took place from 28 October to 1 November 2024 in Japan. Leveraging BLOCK71’s expansive network, the start-ups were invited to a site visit in Aichi Prefecture, participated in individual business meetings with Japanese stakeholders, and attended Messe Nagoya 2024, one of Japan’s largest cross-industry trade fairs. The Immersion Programme concluded with a pitching event organised by the Aichi government, which coincided with the operational opening of BLOCK71 Nagoya. This event provided a platform for the start-ups to showcase their refined pitching skills, demonstrating their potential to attract investment.
“We have secured collaboration interests with manufacturers in Nagoya, thanks to the support and opportunities provided by BLOCK71 Nagoya, JETRO, and ForStartups. The factory visits were immensely productive, giving us first-hand insights into the pain points of our prospective clients. We look forward to strengthening our partnerships with our Japanese colleagues and continuing to benefit from the comprehensive support of the NUS Enterprise ecosystem,” said Mr Ricky Vian Kartolo, CEO of Indas Technologies.
“Through the Japan Immersion Programme, we had the opportunity to speak with potential partners and gain insights into the business environment in Japan. The programme was valuable as it included factory visits, one-on-one corporate meetings, and an exhibition, allowing us to connect with a variety of partners throughout the week,” said Low Jin Huat, CEO of RoPlus.
Stephanie Perry, exit polling manager for NBC News and executive director of the Penn Program on Opinion Research and Election Studies, shares insights into what drove voters in Tuesday’s election.
Stephanie Perry, exit polling manager for NBC News and executive director of the Penn Program on Opinion Research and Election Studies, shares insights into what drove voters in Tuesday’s election.
For many Penn students, Election Day 2024 is about more than two presidential candidates going at it hammer and tongs; it’s also a vital celebration of democracy.
For many Penn students, Election Day 2024 is about more than two presidential candidates going at it hammer and tongs; it’s also a vital celebration of democracy.
A Cornell-led team will use a $2 million National Science Foundation grant to develop a “microbe-mineral atlas,” a catalog of microorganisms and how they interact with minerals, key for mining critical metals used for generating sustainable energy.
A Cornell-led team will use a $2 million National Science Foundation grant to develop a “microbe-mineral atlas,” a catalog of microorganisms and how they interact with minerals, key for mining critical metals used for generating sustainable energy.
A new network led by Professor Andrew Martin aims to protect cyber security in the UK and beyond, realise the benefits of emerging technologies and better prepare society against future cyber threats.
A new network led by Professor Andrew Martin aims to protect cyber security in the UK and beyond, realise the benefits of emerging technologies and better prepare society against future cyber threats.
In an article published today in Lancet Planetary Health, a team of researchers – including several from the University of Cambridge – argue that much more needs to be done to mitigate the impacts of climate change on women, girls and gender-diverse individuals.
Focusing specifically on the intersection between climate change, gender, and human health, the researchers call on countries to work harder to ensure there is gender equity within their delegations to climate conferences and to ensure
In an article published today in Lancet Planetary Health, a team of researchers – including several from the University of Cambridge – argue that much more needs to be done to mitigate the impacts of climate change on women, girls and gender-diverse individuals.
Focusing specifically on the intersection between climate change, gender, and human health, the researchers call on countries to work harder to ensure there is gender equity within their delegations to climate conferences and to ensure climate strategies identify gender-specific risks and vulnerabilities and address their root causes.
As the world prepares for COP29, concerns about gender representation and equality have reignited following the initial appointment of 28 men and no women to the COP29 organising committee in January 2024.
The effects of climate change – from heavy rains, rising temperatures, storms and floods through to sea level rises and droughts – exacerbate systemic inequalities and disproportionately affect marginalised populations, particularly those living in low-income areas.
While the specific situation may be different depending on where people live or their social background (like their class, race, ability, sexuality, age, or location), women, girls, and gender minorities are often at greater risk from the impacts of climate change. For example, in many countries, women are less likely to own land and resources to protect them in post-disaster situations, and have less control over income and less access to information, resulting in increased vulnerability to acute and long-term climate change impacts.
They are also particularly at risk from climate-related threats to their health, say the researchers. For example, studies have linked high temperatures to adverse birth outcomes such as spontaneous preterm births, pre-eclampsia and birth defects. Extreme events, which are expected to become more likely and intense due to climate change, also take a severe toll on women's social, physical, and mental well-being. Numerous studies highlight that gender-based violence is reported to increase during or after extreme events, often due to factors related to economic instability, food insecurity, disrupted infrastructure and mental stress.
Dr Kim Robin van Daalen, a former Gates Cambridge Scholar at the University of Cambridge, and researcher at the Barcelona Supercomputing Center (BSC), said: “Given how disproportionately climate change affects women, girls and gender minorities – a situation that is only likely to get worse – we need to ensure that their voices are heard and meaningfully included in discussions of how we respond to this urgent climate crisis. This is not currently happening at anywhere near the level it needs to.”
The team summarised the inclusion of gender, health and their intersection in key decisions and initiatives under the United Nations Framework Convention on Climate Change (UNFCCC), and analysed gender representation among representatives of Party and Observer State delegations at COPs between 1995-2023. Progress has been slow, they say.
They highlight how previous scholars have consistently noted that emphasis remains mainly on achieving a gender ‘number-based balance’ in climate governance, over exploring gender-specific risks and vulnerabilities and addressing their root causes. They also discuss how there remains limited recognition of the role climate change has in worsening gendered impacts on health, including gender-based violence and the lack of safeguarding reproductive health in the face of climate change.
Although the situation is slowly improving, at COP28, almost three-quarters (73%) of Party delegations were still majority men, and only just over one in six (16%) showed gender parity (that is, 45-55% women). In fact, gender parity has only been achieved in the ‘Western European and Other’ UN grouping (which also includes North America, Australia and New Zealand). Based on current trends, several countries - particularly those in the Asia-Pacific and Africa regions - are expected to take at least a decade from COP28 before reaching gender parity in their delegations.
Dr Ramit Debnath, former Gates Cambridge Scholar and now an Assistant Professor at Cambridge, said: “The urgency of climate action, as well as the slow understanding of climate, gender, and health connections, is cause for concern. Institutions like the UNFCCC must recognize these disparities, design appropriate methods to improve gender parity in climate governance, and keep these representation gaps from growing into societal and health injustices.”
Beyond ensuring that their voices are heard, more equitable inclusion of women has consistently been suggested to transform policymaking across political and social systems, including the generation of policies that better represent women’s interests. Previous recent analyses of 49 European countries revealed that greater women’s political representation correlates with reduced inequalities in self-reported health, lower geographical inequalities in infant mortality and fewer disability-adjusted life-years lost across genders.
Similar positive findings have been reported related to environmental policies, with women’s representation in national parliaments being associated with increased ratification of environmental treaties and more stringent climate change policies. For example, women legislators in the European parliament and US House of Representatives have been found to be more inclined to support environmental legislation than men.
Dr Ronita Bardhan, Associate Professor at the University of Cambridge, said: "Achieving equitable gender representation in climate action is not just about fairness - it's a strategic necessity with significant co-benefits. We can shape climate policies and infrastructure that address a broader spectrum of societal needs, leading to more inclusive solutions enhancing public health, social equity, and environmental resilience."
While the researchers’ analyses focused on achieving gender balance, studies on women’s involvement in climate governance suggest that increased representation does not by itself always lead to meaningful policy changes. Even when formally included, women’s active participation in male-dominated institutions is often constrained by existing social and cultural norms, implicit biases and structural barriers.
Dr van Daalen added: “If we’re to meaningfully incorporate gender into climate policy and practice, we need to understand the risks and vulnerabilities that are gender-specific and look at how we can address them and their root causes at all phases of programme and policy development.
“But we also need to resist reducing women to a single, homogenous group, which risks deepening existing inequalities and overlooks opportunities to address the needs of all individuals. It is crucial to recognise the diversity of women and their embodiment of multiple, intersecting identities that shape their climate experiences as well as their mitigation and adaptation needs.”
The team also highlights that gender-diverse people face unique health and climate-related risks due to their increased vulnerability, stigma, and discrimination. For example, during and after extreme events, transgender people in the United States report being threatened or prohibited access to shelters. Similarly, in the Philippines, Indonesia, and Samoa, gender-diverse individuals often face discrimination, mockery, and exclusion from evacuation centres or access to food. Yet, say the researchers, there are major gaps in knowledge about the health implications of climate change for such groups.
Find out how Cambridge's pioneering research in climate and nature is regenerating nature, rewiring energy, rethinking transport and redefining economics - forging a future for our planet.
Climate governance is dominated by men, yet the health impacts of the climate crisis often affect women, girls, and gender-diverse people disproportionately, argue researchers ahead of the upcoming 29th United Nations Climate Summit (COP29) in Azerbaijan.
Given how disproportionately climate change affects women, girls and gender minorities, we need to ensure that their voices are heard and meaningfully included in discussions of how we respond to this urgent climate crisis
ETH Professor Yiwen Chu is investigating how to apply quantum states to ever larger objects. This should help to gain new insights into physics and develop more efficient technologies. She has now been awarded the ETH Zurich Latsis Prize for her outstanding research.
ETH Professor Yiwen Chu is investigating how to apply quantum states to ever larger objects. This should help to gain new insights into physics and develop more efficient technologies. She has now been awarded the ETH Zurich Latsis Prize for her outstanding research.
President-elect Donald Trump waves at an election night watch party at the Palm Beach Convention Center.Evan Vucci/AP Photo
Nation & World
Did Trump election signal start of new political era?
Christina Pazzanese
Harvard Staff Writer
November 8, 2024
5 min read
Analysts weigh issues, strategies, media decisions at work in contest, suggest class may become dominant factor
President-el
Did Trump election signal start of new political era?
Christina Pazzanese
Harvard Staff Writer
5 min read
Analysts weigh issues, strategies, media decisions at work in contest, suggest class may become dominant factor
President-elect Donald Trump’s election victory over Vice President Kamala Harris was made possible partly by a significantly expanded coalition of multi-ethnic, working-class voters, signaling a potentially seismic shift in the American political landscape, according to a political analyst.
“I believe that we are in a new political era in which class will be the dominant factor in political divisions,” said William Galston, a columnist for The Wall Street Journal and senior fellow at the Brookings Institution, during a panel discussion Thursday hosted by the Center for American Political Studies.
Analysts at the election post-mortem, moderated by Harvey Mansfield, William R. Kenan Jr. Professor of Government, Emeritus, noted Trump made gains with voters in every age group, across racial and ethnic demographics, particularly Hispanic and Black men, and even improved over 2020 with women.
Class and gender were more determinative than race and ethnicity this year, Galston noted, with class, as defined by educational level rather than income, being the most important. The split between people with higher and lower levels of education is a development the country “will be wrestling with for the next generation with consequences that I can’t begin to predict,” he said.
The group noted the Trump campaign correctly predicted wide-ranging voter discontent over the economy and immigration would override any misgivings about their candidate’s personality or behavior. And Trump’s recent pledge to veto a national abortion ban appeared to allay concerns with many voters over an issue Democrats had expected would drive turnout their way.
They also noted the campaign’s media strategy proved very effective. TV ads attacking Harris as being too liberal did some damage. And the unconventional decision to put less emphasis on mainstream news outlets in favor of more friendly, less overtly political settings, like “The Joe Rogan Podcast,” along with aggressive use of social media influencers, crypto and gambling events, and internet memes, helped the campaign reach likely supporters, the panelists said.
The Harris campaign had much to overcome, tied as it was to the coattails of a deeply unpopular administration that was blamed for the nation’s high inflation and problems with border security and immigration, the analysts said.
President Biden ran on restoring normalcy to the pandemic-battered U.S. economy and using his considerable foreign policy chops to cool global hotspots and repair international relations damaged by Trump, said Ross Douthat ’02, opinion columnist at The New York Times, who anticipated that Trump would prevail.
Instead, he said, voters faced much higher prices on essentials like gas and food and witnessed a botched U.S. withdrawal from Afghanistan and two wars erupt in Ukraine and in the Middle East.
Trump “said a lot of wild and deplorable things over the course of the 2024 election but having lived through the first Trump administration in which there was a huge disconnect between Trumpian rhetoric and the actual realities of governance, I don’t think it was that surprising that the voting public [told themselves] if we went through this for four years and things were OK, and Donald Trump did not become a fascist dictator, we can go through it for four more years’” because he offers better prospects than the alternative, Douthat said.
In addition, Biden’s seeming retreat from his 2020 pledge to be a one-term “transitional president,” waiting until July to step aside, gave Harris no time to introduce herself to voters and to lay out and sharpen the substance and presentation of her agenda in just three months put her at a great disadvantage from the outset, said Galston.
Without a primary, Harris also had no real chance to establish an identity independent of Biden, making it easier to tie her to everything voters disliked about his administration. And arguments that Harris and Democrats thought would be key, such as reproductive rights and Trump’s role in the Jan. 6 attack, proved less powerful than hoped.
“There is a mountain of political science evidence to the effect that for people who feel hard-pressed economically or insecure physically, democracy is a luxury good,” said Galston.
Then there was the appeal of Trump himself. The president-elect has had 50 years as a celebrity, skillful marketer, and TV performer, so it’s not surprising that he excels at creating effective political images and viral content, like pretending to serve McDonald’s french fries, that cut through today’s fragmented media landscape and deliver his intended messages, said Bill Kristol ’73, Ph.D. ’79, a longtime conservative intellectual and founder of the now-defunct Weekly Standard, who became a critic of the Republican Party under Trump.
He said Trump returns to office with a more supportive Republican majority in the Senate and possibly the House, expanded presidential protections conferred by the Supreme Court, and a plan to purge the federal government of those who would try to block his initiatives. And so, he appears much more powerful than he was in 2016.
Referencing Karl Marx’s famous quip about history repeating itself the first time as tragedy, the second time as farce, Kristol said about a second Trump term: “What makes me most worried about the next four years is that it could end up being ‘first time farce, second time tragedy.’”
A roundup of the six-part series from Penn Today that focuses on University resources available to students, faculty, staff, and postdocs for their mental, physical, technical, and financial health.
A roundup of the six-part series from Penn Today that focuses on University resources available to students, faculty, staff, and postdocs for their mental, physical, technical, and financial health.
Health
Cutting through the fog of long COVID
MGB Communications
November 8, 2024
5 min read
Researchers say new AI tool sharpens diagnostic process, may help identify more people needing care
While earlier diagnostic studies have suggested that 7 percent of the population suffers from long COVID, a new AI tool developed by Mass General Brigham revealed a much higher 22.8 percent, according to th
Researchers say new AI tool sharpens diagnostic process, may help identify more people needing care
While earlier diagnostic studies have suggested that 7 percent of the population suffers from long COVID, a new AI tool developed by Mass General Brigham revealed a much higher 22.8 percent, according to the study.
The AI-based tool can sift through electronic health records to help clinicians identify cases of long COVID. The often-mysterious condition can encompass a litany of enduring symptoms, including fatigue, chronic cough, and brain fog after infection from SARS-CoV-2.
The algorithm used was developed by drawing de-identified patient data from the clinical records of nearly 300,000 patients across 14 hospitals and 20 community health centers in the Mass General Brigham system. The results, published in the journal Med, could identify more people who should be receiving care for this potentially debilitating condition.
“Our AI tool could turn a foggy diagnostic process into something sharp and focused, giving clinicians the power to make sense of a challenging condition,” said senior author Hossein Estiri, head of AI Research at the Center for AI and Biomedical Informatics of the Learning Healthcare System (CAIBILS) at MGB and an associate professor of medicine at Harvard Medical School. “With this work, we may finally be able to see long COVID for what it truly is — and more importantly, how to treat it.”
For the purposes of their study, Estiri and colleagues defined long COVID as a diagnosis of exclusion that is also infection-associated. That means the diagnosis could not be explained in the patient’s unique medical record but was associated with a COVID infection. In addition, the diagnosis needed to have persisted for two months or longer in a 12-month follow up window.
The novel method developed by Estiri and colleagues, called “precision phenotyping,” sifts through individual records to identify symptoms and conditions linked to COVID-19 to track symptoms over time in order to differentiate them from other illnesses. For example, the algorithm can detect if shortness of breath results from pre-existing conditions like heart failure or asthma rather than long COVID. Only when every other possibility was exhausted would the tool flag the patient as having long COVID.
“Physicians are often faced with having to wade through a tangled web of symptoms and medical histories, unsure of which threads to pull, while balancing busy caseloads. Having a tool powered by AI that can methodically do it for them could be a game-changer,” said Alaleh Azhir, co-lead author and an internal medicine resident at Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system.
The new tool’s patient-centered diagnoses may also help alleviate biases built into current diagnostics for long COVID, said researchers, who noted diagnoses with the official ICD-10 diagnostic code for long COVID trend toward those with easier access to healthcare.
The researchers said their tool is about 3 percent more accurate than the data ICD-10 codes capture, while being less biased. Specifically, their study demonstrated that the individuals they identified as having long COVID mirror the broader demographic makeup of Massachusetts, unlike long COVID algorithms that rely on a single diagnostic code or individual clinical encounters, skewing results toward certain populations such as those with more access to care.
“This broader scope ensures that marginalized communities, often sidelined in clinical studies, are no longer invisible,” said Estiri.
Limitations of the study and AI tool include that health record data the algorithm uses to account for long COVID symptoms may be less complete than the data physicians capture in post-visit clinical notes. Another limitation was the algorithm did not capture possible worsening of a prior condition that may have been a long COVID symptom. For example, if a patient had COPD that worsened before they developed COVID-19, the algorithm might have removed the episodes even if they were long COVID indicators. Declines in COVID-19 testing in recent years also makes it difficult to identify when a patient may have first gotten COVID-19.
The study was limited to patients in Massachusetts.
Future studies may explore the algorithm in cohorts of patients with specific conditions, like COPD or diabetes. The researchers also plan to release this algorithm publicly on open access so physicians and healthcare systems globally can use it in their patient populations.
In addition to opening the door to better clinical care, this work may lay the foundation for future research into the genetic and biochemical factors behind long COVID’s various subtypes. “Questions about the true burden of long COVID — questions that have thus far remained elusive — now seem more within reach,” said Estiri.
Support was given by the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID) R01AI165535, National Heart, Lung, and Blood Institute (NHLBI) OT2HL161847, and National Center for Advancing Translational Sciences (NCATS) UL1 TR003167, UL1 TR001881, and U24TR004111. J. Hügel’s work was partially funded by a fellowship within the IFI program of the German Academic Exchange Service (DAAD) and by the Federal Ministry of Education and Research (BMBF) as well by the German Research Foundation (426671079).
Bess Kalb (left) and Iliza Shlesinger.Niles Singer/Harvard Staff Photographer
Arts & Culture
So, here’s the thing about women comedians that isn’t funny
Veteran stand-up headliner Iliza Shlesinger details self-censorship, social media, and double standards in Mahindra talk
Eileen O’Grady
Harvard Staff Writer
November 8, 2024
4 min read
Comedian Iliza Shlesinger doesn’t jot down her jo
So, here’s the thing about women comedians that isn’t funny
Veteran stand-up headliner Iliza Shlesinger details self-censorship, social media, and double standards in Mahindra talk
Eileen O’Grady
Harvard Staff Writer
4 min read
Comedian Iliza Shlesinger doesn’t jot down her jokes — she stores them in her head until showtime. Even her setlists are just single-word prompts, like “giraffe” (for her baby giraffe impression) or “armpit” (she has joked that no man has ever dumped a woman over armpit stubble).
But that doesn’t mean her routine is mostly impromptu, or “unfiltered,” a label Shlesinger told a Paine Hall audience last Wednesday is overused for female comedians. In reality, she said, most audiences don’t realize how much stand-up material is edited and refined before it’s delivered.
“When you do stand-up, it’s a polished piece of art,” said Shlesinger, a national headliner who has starred in six of her own stand-up comedy specials on Netflix (considered a top-notch venue for comedians) and has toured internationally to sold-out theaters. “Every laugh that is elicited is purposefully placed. I know where the tension is. It’s a symphony.”
At the Hauser Forum for the Arts talk hosted by the Mahindra Humanities Center, Shlesinger spoke with comedy writer Bess Kalb about self-censoring, comedy in the age of social media, and double standards for female comedians.
Shlesinger said that when it comes to the balancing act between not offending and not allowing public opinion to ruin a good joke, female comedians are always judged more harshly for their choices. She believes this could discourage them from wanting to make art.
“As women we are constantly having to justify everything and make sure that you know that ‘I don’t mean to offend,’” Shlesinger said. “We love to pick apart people and women. We do it deliciously. We love the schadenfreude of ‘I know that all she said was she loves fluffy clouds, but she didn’t say she loved rain clouds also, which means you hate the rain, which means you love climate change.’”
Kalb, an Emmy-nominated comedy writer who has written for “Jimmy Kimmel Live!” and The New Yorker, said she’s witnessed this double standard firsthand while writing for an all-female comedy special.
“It was at the same network where there were men who had their own specials, and the notes that we got about what all these women could and couldn’t say were astounding,” Kalb said.
Part of the reason behind the nitpicking, Shlesinger believes, is that social media algorithms have normalized content tailored to individual tastes.
“We all have our own personalized channels on Netflix, and we all have our own personalized comedians because we have so much to pick from on social media,” Schlesinger said. “That’s just not the way the human brain works. How could I tailor something that 100 percent speaks to you?”
Female comedians are often disproportionately expected to pull out anecdotes about trauma onstage to be relatable, said Shlesinger, who added that she speaks about her own experience with miscarriage during stand-ups. Kalb dubbed these moments “trauma gems.” Still, Shlesinger said, vulnerability onstage is important for engaging an audience.
“I always think if I’m feeling this, particularly when it comes to the experiences of being a woman, everybody else is feeling this,” Shlesinger said.
Though she knows her jokes won’t land with everyone, Shlesinger said she works to find the common denominator for her audience in whatever venue she’s in.
“At the end of the day, we are all people, and we do all go through the same things,” Shlesinger said. “When you can tap into that, which I always strive to do, that’s how you’re able to play Kuala Lumpur and also Ireland and also Tokyo. You’re reaching a very human thing.”
Arts & Culture
Making art as process of reclamation
Davóne Tines and Jennifer Koh.Photos by Jodi Hilton
Eileen O’Grady
Harvard Staff Writer
November 8, 2024
5 min read
Singer Davóne Tines ’09 and violinist Jennifer Koh discuss ‘Everything Rises,’ their work about race, complex ties to white world of classical music
Jennifer Koh stood onstage in Paine Concert Hall and lifted her bow t
Singer Davóne Tines ’09 and violinist Jennifer Koh discuss ‘Everything Rises,’ their work about race, complex ties to white world of classical music
Jennifer Koh stood onstage in Paine Concert Hall and lifted her bow to her violin, drawing out the first haunting notes of a Bach sonata.
The back door of the hall then opened, and Davóne Tines ’09 entered singing a Handel aria, his rich bass-baritone interrupting Koh’s performance as he walked down the aisle. They traded notes in call-and-response until Tines joined Koh onstage, and the two performed a duet from Holst’s Songs for Voice and Violin, Op. 35.
The performance was the artists’ re-enactment of the real-life moment Tines and Koh met and began collaborating on “Everything Rises,” a staged performance that premiered at the University of California, Santa Barbara, in 2022. Tines and Koh told the audience at a recent evening talk hosted by the Department of Music how they created their show, which traces their family histories of racialized trauma and their own experiences navigating racism in the majority-white, tradition-bound world of classical music.
“Oftentimes things that are traditional or a part of the core of what institutions uphold go unexcavated, which is really detrimental,” Tines said, pausing to note the names of white European composers like Haydn, Schubert, and Wagner written on the walls in Paine Hall. “We say, ‘Oh, this Beethoven symphony is nonpareil, the best thing that you could be listening to’ so the institution doesn’t go to the lengths of actually self-reflecting to tell the audience why.”
“Oftentimes things that are traditional or a part of the core of what institutions uphold go unexcavated, which is really detrimental.”
Davóne Tines
Tines, who concentrated in sociology, was a member of the Harvard-Radcliffe Orchestra and sang his first opera, Stravinsky’s “Rake’s Progress,” his senior year with the Dunster House Opera Society. Currently he combines opera with gospel and spirituals, and often uses art to highlight and confront societal issues.
The award-winning Tines recalled meeting the violin virtuoso Koh backstage at the Paris Opera several years ago, and when they spotted each other, the only two people of color in the room, each felt an immediate connection.
“We banded together and went to dinner, and continued to get to know each other,” Tines said. “As we compared and contrasted our life experiences, we found that we had a lot of similarities in our journeys as artists of color within classical music.”
Soon after, they began working on “Everything Rises” and slowly assembled a team of collaborators, including composer Ken Ueno, Ph.D. ’05. They approached the show through a lens of lineage, telling the stories of Koh’s mother, a refugee from North Korea during the Korean War, and Tines’ grandmother, who holds vivid memories of anti-Black discrimination and violence in the U.S. Recorded interviews with the two women are included in the show.
“[Famed cellist] Yo-Yo Ma often says that it takes three generations to make an artist: the first generation to pull the family out of poverty, the second generation to become educated, and then the third generation then has the freedom and foundation to have creative pursuits,” Tines said.
The lyrics of one song by Ueno, “Story of the Moth,” comes directly from frustrations Tines expressed about feeling objectified as a performer.
“Those words, which might seem affronting or surprising — ‘dear white people,’ ‘money, access and fame’ ‘I yearn for your validation’ — these were all things I’ve actually felt,” Tines said.
Tines and Koh adapted a setting of the 1930s anti-racism protest song “Strange Fruit” — which they also performed in their show — into a film for Carnegie Hall’s “Voices of Hope” series. That project came together shortly after the 2021 Atlanta spa shootings. In it, their music accompanies a gallery of racist political cartoons and CCTV footage of anti-Asian violence.
Koh said she’s noticed a clear difference in audience enthusiasm when she performs, say, a work by Tchaikovsky as opposed to a socially and politically charged piece like “Embers,” which was inspired by her years of anger and frustration over anti-Asian hate in the U.S.
“As performers, of course [we hope] you guys will clap at the end,” Koh said. “But to a certain degree, art is not about entertainment. It’s about confrontation of oneself. It’s not only an excavation of our own experience, but something, I think, for the audience to experience as well.”
One of their biggest challenges was finding the perfect way to end their show. At first, Tines said, he had suggested ending with the triumphantly hopeful “Ode to Joy” — both the Beethoven and the gospel hymn version — to suggest a move toward unity.
But Koh disagreed, saying that type of resolution would be letting the audience “off the hook.”
Tines turned to her. “Another thing you said was, ‘Davóne, you don’t have to give that to them. That can be for you,’” herecalled. “’You can find resolution and hope for yourself, but the audience will continue to contend with what was presented.’”
Ultimately, they went with an original composition by Ueno titled “Better Angels” (a reference to Lincoln’s first inaugural address), which they perform directly to each other, a choice Tines felt struck the appropriate chord.
“You want people to go to places that are doubtful,” Tines said. “You hope that those things sit with them, but you don’t want to let them off the hook. You don’t want them to eviscerate what actually has been built in the performance.”
Gene Keselman wears a lot of hats. He is a lecturer at the MIT Sloan School of Management, the executive director of Mission Innovation Experimental (MIx), and managing director of MIT’s venture studio, Proto Ventures. Colonel in the Air Force Reserves at the Pentagon, board director, and startup leader are only a few of the titles and leadership positions Keselman has held. Now in his seventh year at MIT, his work as an innovator will impact the Institute for years to come. Keselman and his fam
Gene Keselman wears a lot of hats. He is a lecturer at the MIT Sloan School of Management, the executive director of Mission Innovation Experimental (MIx), and managing director of MIT’s venture studio, Proto Ventures. Colonel in the Air Force Reserves at the Pentagon, board director, and startup leader are only a few of the titles and leadership positions Keselman has held. Now in his seventh year at MIT, his work as an innovator will impact the Institute for years to come.
Keselman and his family are refugees from the Soviet Union. To say that the United States opened its arms and took care of his family is something Keselman calls “an understatement.” Growing up, he felt both gratitude and the need to give back to the country that took in his family. Because of this, Keselman joined the U.S. Air Force after college. Originally, he thought he would spend a few years in the Air Force, earn money to attend graduate school, and leave. Instead, he found a sense of belonging in the military lifestyle.
Early on, Keselman was a nuclear operations officer for four years, watching over nuclear weapons in Wyoming; while it was not a glamorous job, it was a strategically important one. He then joined the intelligence community in Washington, working on special programs for space. Next, he became an acquisition and innovation generalist inside the Air Force, working his way up to the rank of colonel, working on an innovation team at the Pentagon. Meanwhile, Keselman started exploring what his nonmilitary entrepreneurial life could look like. He left active duty after 12 years, entered the reserves, and began his relationship with MIT as an MBA student at the MIT Sloan School of Management.
At MIT Sloan, Keselman met Fiona Murray, associate dean of innovation and inclusion, who took an interest in Keselman’s experience. When the position of executive director of the Innovation Initiative (a program launched by then-President L. Rafael Reif) became available, Murray and MIT.nano Director Vladimir Bulovic hired Keselman and became his managers and main collaborators. While he was unsure that he would be a natural inside academia, Keselman credits Murray and Bulovic with seeing that his skill set from working with the Department of Defense (DoD) and in the military could translate and be useful in academia.
As a military officer, Keselman focused on process, innovation, leadership, and team building — tools he found useful in his new position. Over the next five years at MIT — a place, he admits, that was already at the forefront of innovation — he ran and created programs that augment how the Institute’s cutting-edge research is shared with the world. When the Innovation Initiative became the Office of Innovation, Keselman handed off executive duties to his deputy. Today, he oversees two programs. The first, MIx, focuses on national security innovation, defense technology, and dual-use (creating a commercial product and a capability for the government or defense). The other, Proto Ventures, is centered around venture building and translation of research.
With MIx and Proto Ventures established, it was time to build a teaching component for students interested in working for a startup that the government might want to partner with and learn from. Keselman becoming a lecturer at Sloan seemed like a clear next step. What started as a hackathon for MIT Air Force, Army, and Navy ROTC students to introduce the special operations community to those who were planning to become military officers turned into a class open to all undergrad and graduate students. Keselman co-teaches innovation engineering for global security systems, a design/build class in collaboration with U.S. Special Operations Command, where students learn to build innovative solutions in response to global security problems. Students who do not plan to work for the government enroll because of their desire to work on the most interesting — and difficult — problems in the world. Enrollment in these courses sometimes changes the career trajectory of students who decide they would like to work on national security-related problems in the future. While teaching was not an initial part of his plan, the opportunity to teach has become one of his joys.
Soundbytes
Q: What project brings you the most pride?
Keselman: Proto Ventures is probably what I will look back on that will have made the most impact on MIT. I’m proud that I've continued to sustain it. Building a venture studio inside MIT is unique and is not replicated anywhere.
I’m also really proud of our work with North Atlantic Treaty Organization (NATO)Defence Innovation Accelerator for the North Atlantic (DIANA). DIANA is NATO’s effort to start its own accelerator program for startups to encourage them to work on solving national security questions in their country, based on the model at MIT. We built the curriculum, and I’ve taught it to DIANA startups in places including Italy, Poland, Denmark, and Estonia. The fact that NATO recognized that we need to promote access to startups and that there is a need to create an accelerator network is amazing. When it started, MIT was probably one of the only places teaching dual-use in the country. The fact that I got to take this curriculum and build it to scale in 32 countries and hundreds of startups is really rewarding.
Q: In recognition of their service to our country, MIT actively seeks to recruit and employ veterans throughout its workforce. As a reservist, how does MIT support the time you take away from the Institute to fulfill your duties?
Keselman: MIT has a long history with the military, especially back in WWII times. With that comes a deep history of supporting the military. When I came to MIT I found a welcoming community that enables me to run centers, teach, and have students work on problems brought to us by the government. The magical thing about MIT is an openness to collaboration.
[At MIT,] Being an officer in the reserves is seen as a benefit, not a distraction. No one says, “He's gone again for his military duties at the Pentagon. He's not doing his work.” Instead, my work is viewed as an advantage for the Institute. MIT is a special place for the veteran and military community.
Keselman: The ERG once again underscores the uniqueness of MIT. Recruiter Nicolette Clifford from Human Resources and I had the idea for the group, but I thought, “Would anyone want this?” The reception from MIT Human Resources was positive and reinforcing. To put veterans and military into a supported group and make them feel like they have a home is amazing. I was blown away by it. We don’t usually get this kind of treatment. People thank us for our service, but then move on. It sends a message that MIT is a very friendly place for veterans. It also shows that MIT supports the people that defend our national security and support our way of life.
As a major contributor to global carbon dioxide (CO2) emissions, the transportation sector has immense potential to advance decarbonization. However, a zero-emissions global supply chain requires re-imagining reliance on a heavy-duty trucking industry that emits 810,000 tons of CO2, or 6 percent of the United States’ greenhouse gas emissions, and consumes 29 billion gallons of diesel annually in the U.S. alone.A new study by MIT researchers, presented at the recent American Society of Mechanical
As a major contributor to global carbon dioxide (CO2) emissions, the transportation sector has immense potential to advance decarbonization. However, a zero-emissions global supply chain requires re-imagining reliance on a heavy-duty trucking industry that emits 810,000 tons of CO2, or 6 percent of the United States’ greenhouse gas emissions, and consumes 29 billion gallons of diesel annually in the U.S. alone.
A new study by MIT researchers, presented at the recent American Society of Mechanical Engineers 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, quantifies the impact of a zero-emission truck’s design range on its energy storage requirements and operational revenue. The multivariable model outlined in the paper allows fleet owners and operators to better understand the design choices that impact the economic feasibility of battery-electric and hydrogen fuel cell heavy-duty trucks for commercial application, equipping stakeholders to make informed fleet transition decisions.
“The whole issue [of decarbonizing trucking] is like a very big, messy pie. One of the things we can do, from an academic standpoint, is quantify some of those pieces of pie with modeling, based on information and experience we’ve learned from industry stakeholders,” says ZhiYi Liang, PhD student on the renewable hydrogen team at the MIT K. Lisa Yang Global Engineering and Research Center (GEAR) and lead author of the study. Co-authored by Bryony DuPont, visiting scholar at GEAR, and Amos Winter, the Germeshausen Professor in the MIT Department of Mechanical Engineering, the paper elucidates operational and socioeconomic factors that need to be considered in efforts to decarbonize heavy-duty vehicles (HDVs).
Operational and infrastructure challenges
The team’s model shows that a technical challenge lies in the amount of energy that needs to be stored on the truck to meet the range and towing performance needs of commercial trucking applications. Due to the high energy density and low cost of diesel, existing diesel drivetrains remain more competitive than alternative lithium battery-electric vehicle (Li-BEV) and hydrogen fuel-cell-electric vehicle (H2 FCEV) drivetrains. Although Li-BEV drivetrains have the highest energy efficiency of all three, they are limited to short-to-medium range routes (under 500 miles) with low freight capacity, due to the weight and volume of the onboard energy storage needed. In addition, the authors note that existing electric grid infrastructure will need significant upgrades to support large-scale deployment of Li-BEV HDVs.
While the hydrogen-powered drivetrain has a significant weight advantage that enables higher cargo capacity and routes over 750 miles, the current state of hydrogen fuel networks limits economic viability, especially once operational cost and projected revenue are taken into account. Deployment will most likely require government intervention in the form of incentives and subsidies to reduce the price of hydrogen by more than half, as well as continued investment by corporations to ensure a stable supply. Also, as H2-FCEVs are still a relatively new technology, the ongoing design of conformal onboard hydrogen storage systems — one of which is the subject of Liang’s PhD — is crucial to successful adoption into the HDV market.
The current efficiency of diesel systems is a result of technological developments and manufacturing processes established over many decades, a precedent that suggests similar strides can be made with alternative drivetrains. However, interactions with fleet owners, automotive manufacturers, and refueling network providers reveal another major hurdle in the way that each “slice of the pie” is interrelated — issues must be addressed simultaneously because of how they affect each other, from renewable fuel infrastructure to technological readiness and capital cost of new fleets, among other considerations. And first steps into an uncertain future, where no one sector is fully in control of potential outcomes, is inherently risky.
“Besides infrastructure limitations, we only have prototypes [of alternative HDVs] for fleet operator use, so the cost of procuring them is high, which means there isn’t demand for automakers to build manufacturing lines up to a scale that would make them economical to produce,” says Liang, describing just one step of a vicious cycle that is difficult to disrupt, especially for industry stakeholders trying to be competitive in a free market.
Quantifying a path to feasibility
“Folks in the industry know that some kind of energy transition needs to happen, but they may not necessarily know for certain what the most viable path forward is,” says Liang. Although there is no singular avenue to zero emissions, the new model provides a way to further quantify and assess at least one slice of pie to aid decision-making.
Other MIT-led efforts aimed at helping industry stakeholders navigate decarbonization include an interactive mapping tool developed by Danika MacDonell, Impact Fellow at the MIT Climate and Sustainability Consortium (MCSC); alongside Florian Allroggen, executive director of MITs Zero Impact Aviation Alliance; and undergraduate researchers Micah Borrero, Helena De Figueiredo Valente, and Brooke Bao. The MCSC’s Geospatial Decision Support Tool supports strategic decision-making for fleet operators by allowing them to visualize regional freight flow densities, costs, emissions, planned and available infrastructure, and relevant regulations and incentives by region.
While current limitations reveal the need for joint problem-solving across sectors, the authors believe that stakeholders are motivated and ready to tackle climate problems together. Once-competing businesses already appear to be embracing a culture shift toward collaboration, with the recent agreement between General Motors and Hyundai to explore “future collaboration across key strategic areas,” including clean energy.
Liang believes that transitioning the transportation sector to zero emissions is just one part of an “energy revolution” that will require all sectors to work together, because “everything is connected. In order for the whole thing to make sense, we need to consider ourselves part of that pie, and the entire system needs to change,” says Liang. “You can’t make a revolution succeed by yourself.”
The authors acknowledge the MIT Climate and Sustainability Consortium for connecting them with industry members in the HDV ecosystem; and the MIT K. Lisa Yang Global Engineering and Research Center and MIT Morningside Academy for Design for financial support.
Cambridge University Boat Club (CUBC) student and alumni crews took part in the race, which is held on the Charles River over a 3-mile course comprising several bends that require skilled coxing. Cambridge walked away with gold in the Men’s Championship Eights, Women’s Master’s Double, Men’s Alumni Fours, and Men’s Senior Master’s Fours against top international crews, with an impressive set of results across the board.
Read the full story on the CUBC website.
Cambridge have claimed four golds
Cambridge University Boat Club (CUBC) student and alumni crews took part in the race, which is held on the Charles River over a 3-mile course comprising several bends that require skilled coxing. Cambridge walked away with gold in the Men’s Championship Eights, Women’s Master’s Double, Men’s Alumni Fours, and Men’s Senior Master’s Fours against top international crews, with an impressive set of results across the board.
Cambridge have claimed four golds at one of the biggest events in the global rowing calendar, the Head of the Charles Regatta in Boston, Massachusetts, USA.
The process of identifying promising small molecule drug candidates that target cancer checkpoints may become faster and smarter through virtual screening, according to Weill Cornell Medicine researchers.
The process of identifying promising small molecule drug candidates that target cancer checkpoints may become faster and smarter through virtual screening, according to Weill Cornell Medicine researchers.
By Dr Harry Tan, Research Fellow from the Policy Lab at the Institute of Policy Studies, Lee Kuan Yew School of Public Policy at NUS; Ms Vanessa Lim, Social Worker and Research Analyst at New Hope Community Services; Ms Belle Phang, a Year 6 Student at ACS (Independent); and Mr Brian Monteiro, Manager from the Shelters and Programs at Catholic Welfare ServicesCNA Online, 8 November 2024
By Dr Harry Tan, Research Fellow from the Policy Lab at the Institute of Policy Studies, Lee Kuan Yew School of Public Policy at NUS; Ms Vanessa Lim, Social Worker and Research Analyst at New Hope Community Services; Ms Belle Phang, a Year 6 Student at ACS (Independent); and Mr Brian Monteiro, Manager from the Shelters and Programs at Catholic Welfare Services
The second iteration of the NUS Achievement Awards (NAA), held on 26 October 2024 at the University Cultural Centre, brought together students, alumni and family members to honour and celebrate the stellar contributions of the recipients across the spectrum of student life, an integral aspect of an NUS education.NAA is the most prestigious and only University-level award recognising the exceptional achievements of student life beyond academics. This year’s awards ceremony showcased the extraordi
The second iteration of the NUS Achievement Awards (NAA), held on 26 October 2024 at the University Cultural Centre, brought together students, alumni and family members to honour and celebrate the stellar contributions of the recipients across the spectrum of student life, an integral aspect of an NUS education.
NAA is the most prestigious and only University-level award recognising the exceptional achievements of student life beyond academics. This year’s awards ceremony showcased the extraordinary talents and dedication of NUS students in six categories: Arts, Community Impact, Competitions (General), Leadership, Sports, and Recognition. The awards honoured 78 recipients and over 560 students for their outstanding contributions in these six categories.
Referring to the NAA as a “cherished tradition”, Guest-of-Honour, NUS President Professor Tan Eng Chye, said in his opening address, “This momentous occasion brings us together to honour the remarkable accomplishments of our students. Student life plays a pivotal role in the NUSOne initiative that we have recently embarked on. This holistic approach is designed to foster personal growth and development, equipping our students to become well-rounded individuals who are future-ready.”
“The theme for this year’s Awards, Celebrate Passion, resonates deeply with the spirit of this event, honouring the passion that drives you to excel in each of these diverse areas,” Prof Tan added.
Unveiling of new awards memento
Starting this year, a specially commissioned memento, crafted with sustainability and durability in mind, was given to the award recipients. Presented in two sizes, for individual and group recipients respectively, the versatile porcelain memento was developed over a year-long collaboration between the NUS Office of Student Affairs and the Design Incubation Centre at the College of Design and Engineering.
“NAA celebrates the pinnacle of student success beyond the classroom. This height is reached when students’ passion drives their boundless creativity and strength, where each find their own definition of individual and social impact,” said NUS Dean of Students Associate Professor Ho Han Kiat.
“Therefore, instead of an off-the-shelf trophy, a specially designed memento will help reflect the same spirit in its creation, and one that is built-to-purpose and accomplishes more based on your imagination,” Assoc Prof Ho added.
Fresh focus on the arts and sustainability
Two new categories in the areas of sustainability and the arts were added to NAA this year.
In celebration of the vibrant campus arts scene, the Arts category honours a range of artistic achievements by individual students, co-curricular activities, and hostel groups, reflecting the University’s commitment to fostering an Arts-for-All campus.
Among the arts CCAs, NUS Indian Instrumental Ensemble (IIE) was the most prominent, receiving a total of four group awards, including one Distinction for their production, Desi-Lah: The Rhythm of Home. The music showcase featuring the stories of migrant workers living in Singapore through music from their hometowns, saw the IIE members demonstrating their commitment and hard work by learning new languages and instruments to accurately represent the six different Indian states.
“We are incredibly proud to receive these awards. It is an honour to have our efforts recognised, as it shows that our desire to create meaningful music has resonated with so many,” said Uma Gowri Ramanathan, former President of NUS IIE and Year 4 Sociology undergraduate.
The other new category―the Eco Champions award, recognises student groups that have made significant contributions to environmental sustainability. The inaugural recipients were the NUS Students’ Union, SunNUS and Tembusu College, in recognition of their efforts in encouraging sustainability principles throughout the organisation and implementation of student events.
Community spirit shines bright
A common theme among this year’s Distinction award recipients was care for the community.
NUS Malay Language Society’s Pentas Budaya, a production exploring the social phenomenon of child fostering through dialogues and guidance from Teater Ekamatra, received the Distinction award for Original Artistic Work of the Year. The student-led production creatively incorporated tableaux scenes and live Oud music in their storytelling.
Project Athlead by the NUS Medical Society, which received a Distinction award in the Community Impact category, brought the joy of sports to children from disadvantaged households. By partnering with Beyond Social Services and Singapore Children's Society, the team members provided the children with wider access to sports such as diverse sports activities and training with coaches.
“Our team felt really passionate about providing unique sporting experiences to kids who may not have had such experiences. I undertook this project because I wanted to work with the Singapore Concert Society branch which works with children in my neighbourhood. We feel absolutely happy and acknowledged with this award from NAA,” said co-team lead Selvaraj Vijayaragavan (Year 4, NUS Medicine)
One of two Distinction Awards for Leadership this year was presented to Year 3 Pharmacy undergraduate Nicolette Koh, who championed community causes and raised awareness for people with disabilities among her peers during her term as President of NUS Enabler.
Nicolette, who was diagnosed with profound hearing loss during childhood, introduced Singapore Sign Language classes taught by deaf instructors to the NUS community. She was also instrumental in rallying support within NUS to field the University’s first contingent at the Purple Parade, a national platform to promote awareness and celebrate the abilities of persons with special needs.
“This award means a lot to me as an inclusive leader who values working alongside peers to ensure each voice is heard and valued. It signifies my commitment to empowering the persons with disabilities community as equals and advocating for the best inclusive practices within our NUS community,” Nicolette said.
Strength and resilience embodied
The spirit of determination and resilience was another theme that resonated amongst award recipients, including Year 4 Architecture undergraduate Eugene Tan, who took home the Distinction award in the Competitions (General) category. On his seventh time competing at The Architecture Drawing Prize 2023, he emerged top in the Digital Category with his winning design. Developed during his final year at NUS, it used an unconventional circular composition of Pedra Branca to convey new understandings of time, ecology, and orientation.
“The award is a recognition of all the hard work and effort that I have put into developing my architecture projects beyond my studies. It is work that is not seen on the transcripts and truly validates the time and effort that I have committed,” Eugene said.
TeamNUS Silat exponent Nurul Irbah Binte Muhammad Razali and swimmer Nicholas Cheong, who received Merit awards for Sportswoman and Sportsman of the Year respectively, recalled how they bounced back from significant sports injuries to emerge triumphant in their respective sporting events.
It was an inspiring return to international competition in 2023 for final-year Life Sciences undergraduate Irbah. After a three-year absence from the national team, she represented Singapore at the 2024 ASEAN University Games. Persevering through the pain of an ankle injury sustained during the finals, Irbah emerged victorious to score a hard-fought gold medal. This was her third gold of the year, on top of the two other gold medals she received at the Tertiary Silat Competition, where she was also named Best Female Athlete.
Nicholas, a Year 2 Business student, sustained a wrist injury that required surgery, followed by a period of rest for four months before he could return to training. He bounced back to represent Singapore at the 2024 ASEAN University Games, clinching a silver medal in the 50m breaststroke. His win was especially significant as his elder brother, Christopher Cheong, had also received the same award five years ago.
Togetherness and human connection
Though absent in person due to being on an exchange programme, Distinction award recipient for Performing Arts Student Leader of the Year, Lim Kai Ling (Year 3, College of Humanities and Sciences) still managed to find her way ‘on stage’ not just once, but twice – thanks to the efforts of her teammates from NUS Arts Production Crew (NAPC). In good humour, they created a life-sized standee of her and used it to great effect to accept the award on her behalf, along with the NAPC’s Arts Group of the Year Distinction award.
Visit this page to find out more about the NAA and to view the full list of this year’s recipients.
Hydrogen-powered planes are set to take wing around the world in the future. To make this possible, engineers have to develop the jet engines that will power them. Experiments by researchers at ETH Zurich are now providing the necessary basis for making these engines powerful and durable.
Hydrogen-powered planes are set to take wing around the world in the future. To make this possible, engineers have to develop the jet engines that will power them. Experiments by researchers at ETH Zurich are now providing the necessary basis for making these engines powerful and durable.
For graduate students Kelsey Pittman and Jacqueline Orr, service in the U.S. military led to their interest in engineering, and to the MIT Department of Civil and Environmental Engineering (CEE).Pittman’s first exposure to the military and engineering took place during her undergraduate years at the United States Military Academy West Point. “I remember back in high school, my dad kind of planted the seed of going to a military academy,” says Pittman. While she admitted to feeling overwhelmed a
For graduate students Kelsey Pittman and Jacqueline Orr, service in the U.S. military led to their interest in engineering, and to the MIT Department of Civil and Environmental Engineering (CEE).
Pittman’s first exposure to the military and engineering took place during her undergraduate years at the United States Military Academy West Point.
“I remember back in high school, my dad kind of planted the seed of going to a military academy,” says Pittman. While she admitted to feeling overwhelmed about the prospect of going to college at that time, her father’s rationale for West Point resonated with her. “I’m a structured person and I like routine,” she says — two aspects the environment at West Point provides.
While Pittman’s father hadn’t attended a military academy or served in the military, he was a member of the Federal Bureau of Investigation for 25 years, and her family connections provided Pittman with valuable perspectives on West Point. It ended up being the only undergraduate program Pittman applied to. “I just wanted to be part of something bigger than myself, and all the opportunity West Point could give was pretty incredible,” she says.
Pittman’s parents also recognized her passion for design and encouraged her to consider a career in architecture. Although West Point didn’t offer an architecture program, she chose civil engineering, a field that allowed her to combine her love of math and design.
After graduating, she was commissioned as an engineer officer in the U.S. Army and has served for over seven years. She is now pursuing her graduate education at MIT in structural engineering with advisor John Ochsendorf, professor of civil and environmental engineering and architecture. Pittman is researching Gothic-style infrastructure for its masonry resiliency and stability over time, specifically Beauvais Cathedral and its structural safety. One of the reasons she chose to pursue her graduate studies in CEE was the department’s openness to explore diverse research opportunities.
“I was really drawn to the ability to carve my own research niche and have the freedom to figure out what really interests me, rather than being presented with a limited set of research options,” says Pittman.
After receiving her master’s degree, Pittman will return to West Point as a faculty member for three years and then continue her service obligation in the Army. She credits her mentors at West Point as being instrumental in her academic and professional journey and hopes to play a role in shaping the lives of future generations of cadets.
“I have incredible mentors that I still talk to, and I really wanted to be able to go back and give back to a place, and the people that gave me so much support and room to grow and find my passion. Every step has been made in my career so far to get back to West Point and teach in the civil engineering department.”
Pittman also acknowledges and values the Army for the opportunities it has provided her, particularly the chance to pursue her master’s degree at MIT, the relationships she has built along the way and career path it has opened.
“I’ve enjoyed getting to know the soldiers from all over the world and seeing them in this environment where you might give each other a hard time, but at the end of the day you know that you have each other’s back.”
Jacqueline Orr, also a U.S. Military Academy graduate, is currently pursuing a master’s degree in structural engineering under the guidance of Josephine Carstensen, the Gilbert W. Winslow Career Development Associate Professor for Civil and Environmental Engineering. Inspired by her father to pursue a strong foundation in math and science, she earned a bachelor’s degree in mechanical engineering. After graduation, she fulfilled her service obligation and served for six years as a member of the 173rd Airborne Brigade based in Vicenza, Italy — a unit renowned for its history, combat readiness, and crucial part of the Army’s joint integration with NATO.
Reflecting on her experience, Orr says, “Airborne units, like many great units in the Army, require overcoming an additional litmus test — in this case, conquering the fear of jumping from high-performance aircraft, hundreds of feet above the ground."
While she enjoyed her time in the Army, her experiences ultimately led her to pursue a career more closely aligned with her passion for engineering. “When I was studying mechanical engineering, I developed a strong interest in structures during my senior design project,” she says.
She particularly enjoyed learning how to model structures and analyze how they respond to various forces. She felt that the traditional methods taught in her classes lacked an optimization component, which sparked her interest in topology optimization as a potential solution.
This desire to further explore topology optimization — specifically in relation to structures and their behavior under different forces — motivated her to seek graduate programs specializing in this field. Orr applied for and was awarded a Department of Defense (DoD) SMART Scholarship that brought her to MIT to study topology optimization in the Carstensen Lab.
“MIT was the ideal institution to pursue this research due to Professor Carstensen’s expertise and innovative work happening in the civil and environmental engineering department,” Orr says.
Looking ahead, Orr plans to apply the knowledge gained at MIT to a research-oriented career as part of her obligation as a DoD SMART Scholar. But for now, she’s adjusting to life as a graduate student. “I’m really enjoying my classes and getting to know people in the lab — it’s been an amazing experience,” she adds.
Catherine Pakaluk.
Nation & World
U.S. fertility rates are tumbling, but some couples still go big. Why?
Economist's ‘Hannah's Children’ is an up-close look at large families
Samantha Laine Perfas
Harvard Staff Writer
November 7, 2024
long read
Birth rates are falling globally. In fact, the fertility rate in the U.S. hit a record low of 1.64 expected births per a woman’s lifetime in
U.S. fertility rates are tumbling, but some couples still go big. Why?
Economist's ‘Hannah's Children’ is an up-close look at large families
Samantha Laine Perfas
Harvard Staff Writer
long read
Birth rates are falling globally. In fact, the fertility rate in the U.S. hit a record low of 1.64 expected births per a woman’s lifetime in 2020.
At the same time, about 5 percent of women in the nation currently have five or more children. Catherine Pakaluk, Ph.D ’10, a Catholic University economist and mother of eight (and stepmother of six), wanted to find out why, both academically and personally. Her new book, “Hannah’s Children: The Women Quietly Defying the Birth Dearth,” offers an intimate view into the lives of families around the country who have decided to pursue large families.
Pakaluk spoke with the Gazette about what she learned. This interview has been edited for length and clarity.
What drew you to this topic, and why do you think it’s an important one to talk about in the current moment?
As an economist I’ve been interested in questions related to population growth as it relates to labor market and human development for a long time. But in the last 10 years, especially since the Great Recession, it’s become increasingly a puzzle: Why have birth rates been declining so rapidly and why aren’t they responding to some of the [policy] things that we would assume they would respond to? I thought this was really interesting.
I’m also interested in women’s choices and labor market choices. I was noticing that around the world, countries are about to get kind of bossy about women having children. They’re applying bigger and bigger incentives to try to get people to have kids. It’s becoming a mounting policy concern, with nations wanting people to have kids. That always sounded a little alarming to me, so I wanted to see what we could learn. Falling birth rates represent one of the main concerns for the contemporary political economy, mainly because the social welfare programs [like Social Security] are creaking and straining under these decreasing birth rates.
In your book, you talk to women who are defying the birth rates by having five or more children. You found that they faced misperceptions by those around them about why they had so many children. What were they?
The main misperception would be that the kind of women who decide to have a lot of children — whether they have careers or not — must be part of religious cults or are people who lack full human agency. That’s concerning that the assumption is that other people are making decisions for these women, be it their religious leaders or husbands. That’s not the case.
The other main misperception that I heard commonly is that women who have a lot of children probably reject modern forms of birth control, either because they don’t know how to access it or don’t believe in it. I knew that wasn’t true in my life, but I thought it was worth exploring.
Nobody I talked to said that not using birth control was the reason for their family size. Some women did prefer to use fertility awareness methods for spacing their children, but I found that whether they did or didn’t use birth control they truly and intentionally chose to have their children.
Did you find any connection between religion and family size?
What I found (and this will sound very economist-y of me) is that the choice process followed a cost-benefit, rational choice model. In that framework, when people make a decision they weigh the expected joys or benefits with the expected costs.
In the case of women making purposeful decisions to have large families, they definitely described the costs in their choice. What I heard was an acute description of the costs, which didn’t seem to be expense-driven, but were more about waking up every two hours for a long time, the effects on their bodies, the trade-offs made in regard to their personal identities.
But when it comes to faith and religion, what I heard was a uniting around the idea that children are a great blessing. That provided a huge benefit to the women in my study that outweighed the significant personal costs. Faith played a role of tipping the scales toward having more children.
I will say, I didn’t talk to people who had smaller family sizes. That wasn’t the purpose of this project. But this group was a group of people who really felt that they began their families intentionally, experienced great joy, felt the blessings were tangible in their lives, so they decided to keep going.
Studies have shown many women want more children than they eventually have — you call this the fertility gap. What’s causing this?
If I could easily answer what’s causing the gap, I’d probably be a candidate for the next Nobel Prize. But in all seriousness, I think of recent Nobel laureate Claudia Goldin’s work, which helps us see what’s going on. I would point back to her work on the “Power of the Pill” and what the pill does in shaping the lives of American women. It opens the choice set, right? And, of course, I think her more recent work on women’s labor is so insightful and helps us see that when you change the choice set for people, who are rational agents making decisions, you create a new comparison class for the goods that you can choose.
What hormonal contraception did in the 20th century is it provided women with more choices. If you wanted to pursue a career, you didn’t have to give up marriage. In the past, if you wanted to go to college or have a profession, you had to give up marriage and partnership. What ends up happening when you broaden the choice set is that a lot of people want both. And so they end up choosing a little bit less of each. So if, objectively speaking, you might have chosen three kids, you might be okay with the trade-off of fewer children to also have a profession.
What we’re seeing is the outcome of a constrained optimization. People are choosing the bundle career and family, and in this constrained world there’s only so much time. One of the women in my study said, “Look, there’s some things that are best done young.” She says, of her medical training, “I would never want to go through that later in life.” But it’s also the easiest time to build the family size that you might want to have. So you have these two things that are in tension. I don’t think that’s an enormous mystery.
Most of the families that you talk to in the book describe themselves as happy and healthy. Did you speak to any who are struggling — economically, emotionally, physically — with dealing with a larger family?
My sample is not representative, and people volunteered to talk to me. So I’m sure, in that sense, there’s a bit of a bias in favor of people who are pretty happy with how things were going. But within that sample, I intentionally looked for families who are at all ends of the wealth distribution. I talked to families who were either on food stamps or eligible for food stamps or other forms of income supplements.
I also spoke to people who were going through postpartum depression, women who were struggling to manage ongoing mental illness, depression, or anxiety. But I would say that everybody that I talked to, mostly due to the study design, felt that whatever troubles they experienced were worth it. I certainly don’t believe having a large family is any guarantee that everything will work out well. However, the purpose of the book was to examine motive: What could lead people to have more children than normal?
The women you spoke to were fully on board with their decisions to devote so much of their lives to their families, even while acknowledging that it took incredible sacrifice. Is there anything policymakers can glean from their experiences that can help make things better for parents and families overall?
I don’t think women have children thoughtlessly. I think a lot of blood, sweat, and tears goes into the decision. And I would say that the same thing must be true for people who choose not to have children.
The sometimes flippant nature of political discourse on women’s family and fertility decisions doesn’t take the issue as seriously as it should. The idea that we could influence a couple with $1,000 more of a tax break or a baby bonus is almost offensive. Or even to say you can influence people with a lot of money, like $200,000 to $400,000 per baby, that it would move the needle. I think this is a really sacred and private decision.
So if we know that, what could make things easier? One thing that came out of this work was the story of faith, but I think that story has just as much to do with community and social support. Where can we put our dollars (in a fiscally responsible way) that helps people in this way?
What I took away from my study was that whatever we can do from a policy perspective to protect and enlarge spaces — religious or not — for people to grow and develop, those are the kinds of things people should think about.
I also think about role modeling. Anastasia Berg and Rachel Wiseman’s book “What Are Children For? On Ambivalence and Choice” is so interesting. They look at these deep-seated fears that people have about making the choice to have children. But if you can see others who have gotten over the hurdles, you might be more open to it. I think policymakers could think harder about how we treat faith institutions and think about them as a favored means to provide support to families.
What do you hope readers take away from the experiences of the women in your book?
I wanted to leave people with a message of hope. These are serious topics. But if there’s some people out there defying the odds and not undershooting their own fertility desires, here’s a model of people who are pulling this off.
A lot of times you read the news and see how nobody’s having the families they want to or it’s getting harder and harder. It’s helpful to realize that trends in society are measured in averages. But in fact, many people live lives that are very different from the average.
If we’re interested in building a family, I think there are some concrete lessons from people who have done it. It shows that what’s happening with family size isn’t deterministic. I hope people feel hopeful and optimistic about it, and not like these falling birth rates have to be the whole story of the future.
The Straits Times, 7 November 2024, Business, pA32The Business Times, 7 November 2024, p4Lianhe Zaobao, 7 November 2024, Business, p30Berita Harian Online, 7 November 2024
By Dr Leong Sai Mun, Asst Prof (Research) from the Dept of Pathology and Primary Member at the Centre for Cancer Research, Yong Loo Lin School of Medicine at NUSLianhe Zaobao, 7 November 2024, Opinion, p30
By Dr Leong Sai Mun, Asst Prof (Research) from the Dept of Pathology and Primary Member at the Centre for Cancer Research, Yong Loo Lin School of Medicine at NUS
By Dr Bellam SreenivasuluCurrently, Singapore relies heavily on natural gas, which accounts for 95 per cent of its energy needs, highlighting the critical need for diversification into renewable sources. According to the Sustainable Energy Association of Singapore, solar energy has the potential to meet approximately 17 per cent of the nation’s electricity demand. Singapore’s Green Plan is ambitiously targeting a six-fold increase in its solar electricity capacity, aiming to achieve 2 Gigawatt-p
Currently, Singapore relies heavily on natural gas, which accounts for 95 per cent of its energy needs, highlighting the critical need for diversification into renewable sources. According to the Sustainable Energy Association of Singapore, solar energy has the potential to meet approximately 17 per cent of the nation’s electricity demand. Singapore’s Green Plan is ambitiously targeting a six-fold increase in its solar electricity capacity, aiming to achieve 2 Gigawatt-peak (GWp) of solar electricity by 2030, up from the current 300.3 Megawatt-peak (MWp) in its commitment to addressing climate change, and towards safeguarding the nation’s energy security.
This focus on solar energy is driven by key challenges that include limited land availability for ground-mounted solar photovoltaic (PV) panels and Singapore’s constraints on wind and nuclear energy options, making solar energy a pivotal component of its renewable energy strategy. The growth of solar PV installations in Singapore will be significant, with plans to reach a capacity of 6 GWp through the utilisation of rooftops and floating PV systems.
In our recent study, published in Applied Energyin August 2024, we employed systems thinking and system dynamics (ST&SD) modelling methodology to evaluate Singapore’s aspiring solar energy capacity targets, carbon emission savings, and the overall energy mix.
Understanding energy systems through a system dynamics approach
ST&SD is a methodology designed to understand the holistic behaviour of complex systems over time. It encompasses several key stages/processes: problem structuring, which involves identifying and framing the problem within the system’s context; causal loop modelling, which creates a qualitative model to show feedback loops and causal relationships; dynamic modelling, which develops stock and flow diagrams as quantitative models for formulation and simulation to generate system behaviour under various scenarios; scenario planning and modelling, which explores different future scenarios and their potential impacts; and implementation and organisational learning, which applies insights from modelling to real-world situations and fosters a culture of continuous learning and adaptation. This methodology is a powerful tool for tackling complex problems by providing a structured approach to understanding and influencing system behaviour over time.
Adopting this systems approach, we considered four main subsystems to include in the model for formulation and quantification, namely installation of PV panels, cost of solar electricity, carbon emission savings, and energy demand. The base model simulations focused on key variables affecting solar electricity capacity, including comparing peak solar capacity with the government’s expected peak capacity, the share of solar electricity in Singapore’s national grid, and net carbon emission savings. Policy simulations and evaluations were conducted by appending the base model with other policy scenarios, such as area and utilisation factors for PV installations, as well as subsidies and panel efficiency. Simulations were performed on these policies individually and in combination to provide a comprehensive analysis of their impacts.
Meeting our solar energy targets ahead of schedule
According to projections by the Solar Energy Research Institute of Singapore, the share of solar energy in the national grid is expected to be between 2 to 6 per cent in 2030 and 3.5 to 8 per cent in 2040, with carbon emission savings of 0.5 to 1.4 million tonnes per annum in 2030 and 0.8 to 2.1 million tonnes per annum in 2040. Our simulations and policy scenarios align with these projections, showing that the share of solar energy could reach 3.9 per cent in 2030 and 5.1 per cent in 2040, with annual net carbon emission savings of 1.1 million tonnes in 2030 and 2 million tonnes in 2040. These results indicate that Singapore is on track to meet its solar capacity target of 2 GWp by 2030, potentially even earlier by 2028.
Based on the results of our study, we recommend for Singapore to aim for an 8 percent share of total electricity generation by 2040 to effectively implement Green Plan policies such as enhanced land use efficiency, subsidies, and improved solar panel efficiency. Additionally, Singapore needs to explore additional alternative energy sources to meet its growing energy demand and net-zero targets while ensuring energy security.
The ST&SD methodology discussed here can complement existing initiatives and policies by various agencies, stakeholders and the government in planning long-term energy security solutions for a land-scarce country like Singapore. These efforts will be crucial for securing an environmentally friendly energy mix and deployment in Singapore’s context.
This study was developed as part of a semester-long undergraduate research project under the UTC2704 Projects in Systems course offered at Residential College 4. In this senior seminar, each student under supervision will apply ST&SD methodologies and skills to simulate and understand complex issues, including those related to energy systems, such as sustainable energy, renewable energy, and carbon emissions.
About the author
Dr Bellam Sreenivasulu is a Senior Lecturer and Resident Fellow at Residential College 4. He teaches systems thinking and system dynamics courses and supervise students in relation to energy systems and related issues on sustainable energy production, energy supply and demand, energy security, and carbon emissions. Dr Bellam is passionate about designing and implementing effective, impactful, interdisciplinary, student‐centred pedagogy to enhance students' critical and systems thinking skills.
The University of Melbourne and France's National Centre for Scientific Research (CNRS) will establish a new International Research Laboratory in Melbourne that expands and consolidates the existing collaboration between the cancer laboratory of Professor Frédéric Hollande, from the University of Melbourne, and that of Dr Patrick Mehlen (CNRS, Lyon).
The University of Melbourne and France's National Centre for Scientific Research (CNRS) will establish a new International Research Laboratory in Melbourne that expands and consolidates the existing collaboration between the cancer laboratory of Professor Frédéric Hollande, from the University of Melbourne, and that of Dr Patrick Mehlen (CNRS, Lyon).
The tower of Memorial Hall.Photo by Grace DuVal
Campus & Community
Dale Weldeau Jorgenson, 89
November 7, 2024
6 min read
At a meeting of the Faculty of Arts and Sciences on Nov. 5, 2024, the following tribute to the life and service of the late Dale Weldeau Jorgenson was spread upon the permanent records of the Faculty.
Dale W. Jorgenson was an economist of prodigious energy and creativity, remarkable dis
At a meeting of the Faculty of Arts and Sciences on Nov. 5, 2024, the following tribute to the life and service of the late Dale Weldeau Jorgenson was spread upon the permanent records of the Faculty.
Dale W. Jorgenson was an economist of prodigious energy and creativity, remarkable discipline, and extraordinary productivity and impact. He pioneered combining rigorous theoretical modeling with careful empirical work to develop economic models that both enhance our understanding of the economy and provide directly applicable quantitative guidance to economic policy. He led the way in developing rich, theory-informed data sets that can be used to answer important empirical questions in economics, inspiring a movement to improve national economic measurement. He was also a bulwark of the Harvard Department of Economics and helped to transform it — and the field itself — into one in which empirical research is careful, relevant, and grounded in economic theory.
Jorgenson, an only child, was born in Bozeman, Montana, on May 7, 1933. A former Ph.D. student John Fernald recalls Jorgenson saying that “Montana was a pleasant place, especially if you like winters,” to which he added, “I don’t.” Jorgenson was nominated for a scholarship to the Naval Academy but was refused admission because of his poor eyesight; instead, he attended Reed College, where he became fascinated by economics. At the advice of his undergraduate thesis advisor, Jorgenson entered the Ph.D. program at Harvard, where, after three and a half years, he received his Ph.D. in 1959 under the supervision of Wassily Leontief.
Jorgenson’s first academic appointment was at the University of California, Berkeley, where, after four years, he was promoted to full professor at age 30. In 1969, Jorgenson was recruited back to Harvard as a key part of Henry Rosovsky’s plan to modernize the Department, which included recruiting Zvi Griliches and Kenneth Arrow and promoting Martin Feldstein. In 1971, Jorgenson received the John Bates Clark Medal, awarded (then biennially) to the most intellectually significant American economist under age 40, for marrying economic theory and econometric analysis. One of us had the honor of promoting Jorgenson to University Professor in 2002 to recognize his lifelong research program that changed the discipline.
A scholar of prodigious energy and generosity, Jorgenson held multiple important service positions in the economics profession, including President of the Econometric Society in 1987, President of the American Economic Association in 2000, and Chair of the Advisory Committee to the U.S. Bureau of Economic Analysis from 2004 to 2011.
Of Jorgenson’s many intellectual contributions, he will be remembered particularly for three. First, in a 1963 article, he developed the modern framework for analyzing firms’ investment decisions. This paper transformed the then-murky topic into one guided by a precise, implementable formula for a key determinant of investment, the user cost of capital.
Second, Jorgenson is a founder of modern growth accounting. He provided a framework — the so-called KLEMS system of capital, labor, energy, materials, and services — for measuring the determinants of economic growth. Jorgenson’s vision, combined with his passion for getting the details right, created a global society dedicated to measuring, comparing, and using these determinants of growth.
Third, Jorgenson was a pioneer in econometric modeling, especially of producer and consumer behavior. Starting with the oil crisis of the 1970s, he developed economy-wide models that linked energy prices and production to overall economic growth. He and coauthors used a descendant of this model in a pioneering 2013 book, which analyzed how the revenue from a carbon tax might best be used to foster economic growth, and the lessons from that research remain relevant today.
Altogether, Jorgenson authored 300 articles in economics and authored or edited 37 books, undertaken with more than 70 collaborators. His final edited volume appeared in 2016, when he was 83.
Connecting all this work was an abiding commitment to developing rich data sets, grounded in economic principles, that could be used to estimate econometric models. In so doing, Jorgenson moved economic measurement from the dull work of government statisticians to be a central part of modern economic research.
Jorgenson and his inseparable wife, Linda, were dedicated to the welfare and betterment of the Department of Economics. He chaired the Department from 1994 to 1997. Linda, in turn, was its social glue, as outgoing and ebullient as was Jorgenson reserved. Linda and Dale hosted countless events at their apartment for students and colleagues. Linda reached across the lingering barriers of seniority and status to ensure that all members of the Department knew they were valued personally as well as professionally. Jorgenson’s mentorship, combining high standards with personal support, and Linda’s warm embrace were deeply helpful to many junior colleagues.
Jorgenson’s work at Harvard extended beyond the Department. He directed the Program on Technology and Economic Policy at the Harvard Kennedy School from 1984 to 2007. He helped lead the Harvard-China Project on Energy, Economy, and Environment in the School of Engineering and Applied Sciences from its founding in 1993, advising a stream of economics students from China and working with economist colleague Mun Ho until spring 2022. Jorgenson was also a Faculty Fellow at the Kennedy School’s Harvard Environmental Economics Program, in which he was also active until shortly before his death.
One of Jorgenson’s greatest legacies is his legion of students, both undergraduate and graduate. Jorgenson had a formal and dispassionate public demeanor: graduate students regularly presented him as Mr. Spock of Star Trek at the Department’s annual holiday skit party. In reality, however, Jorgenson was warm and supportive of his students and junior colleagues, with a wry sense of humor. His former students include Robert Hall and Ben Bernanke, two of the leading economists in the profession, and two consecutive Harvard senior classes voted him to be one of their favorite professors.
Economics is a different and better discipline, and Harvard is a better place, because of Jorgenson Jorgenson. Economic measurement is now recognized as an important part of the work of the profession and as something that can be, and indeed must be, infused with theory. From the cost of capital, to the KLEMS approach to production, to his many other contributions, the Jorgenson approach to economics lives on.
Respectfully submitted,
Michael McElroy Lawrence H. Summers James Stock, Chair
Fall flowers on campus.Photo by Jon Ratner
Campus & Community
Otto Thomas Solbrig, 92
Memorial Minute — Faculty of Arts and Sciences
November 7, 2024
4 min read
At a meeting of the Faculty of Arts and Sciences on Nov. 4, 2024, the following tribute to the life and service of the late Otto Thomas Solbrig was spread upon the permanent records of the Faculty.
Otto Thomas Solbrig was born in Buenos Ai
At a meeting of the Faculty of Arts and Sciences on Nov. 4, 2024, the following tribute to the life and service of the late Otto Thomas Solbrig was spread upon the permanent records of the Faculty.
Otto Thomas Solbrig was born in Buenos Aires in 1930 and died in Massachusetts in 2023. He was trilingual as a child, speaking English with his mother, German with his father, and Spanish with his siblings. From 1950 to 1954, he studied for an undergraduate degree in agronomy at the National University of La Plata, where he was active in student politics. By order of the government of Juan Péron, Solbrig was expelled from the university and was imprisoned for three months without trial in 1955. After his release, but before the fall of Péron, and without completing the formal requirements for his undergraduate degree, Solbrig emigrated to the United States to study botany at the University of California, Berkeley. His doctoral thesis in plant systematics was advised by Lincoln Constance, Herbert G. Baker, and George Ledyard Stebbins, Jr. Solbrig then served as a curator in Harvard’s Gray Herbarium for seven years (1959–1966) before accepting a faculty position at the University of Michigan. Three years later, he returned to Harvard as a tenured professor of biology, where he remained until his retirement in 2002.
Solbrig’s research focused on the lives of plants in ecological communities. He is best known for his work on dandelions, in which he used isozyme patterns to show that multiple genotypes existed within local populations. In seemingly simple habitats like lawns, he found that there was not one “general purpose genotype” superior to all others but rather multiple genotypes that were better suited to different microenvironments. One factor that helped maintain the genetic diversity of dandelions was the pattern of human perturbation. Some genotypes were better adapted than others to frequent disturbance. Solbrig thus placed earlier theoretical work on “life-history strategies” on a firm genetic basis.
Throughout his career, Solbrig was prominent in the organization of international collaborative research, both on biodiversity and on tropical agriculture. During the 1970s, he was an administrator of the International Biological Program’s Convergence and Divergence of Ecosystems project, which compared the desert floras of Arizona and Sonora with those of northern Argentina and influenced a similar comparison of the Mediterranean floras of Chile and California. During the 1980s, Solbrig served as president of the International Union of Biological Sciences and directed its Decade of the Tropics program. He also served on the International Coordination Council and on the General Scientific Advisory Group for UNESCO’s Program on Man and the Biosphere. In the 1990s, he was the chair of the first Internationally Commissioned External Panel of the Centro Internacional de Agricultura Tropical, with headquarters in Colombia.
Solbrig’s international activities took him to many countries, including the Soviet Union and China, but he always maintained a special love for Latin America. He taught courses on tropical ecology in Costa Rica and Venezuela for North American students, and he taught many courses for Argentinian students in his beloved Argentina. After returning to Harvard in 1969, Solbrig was active in the community of Harvard faculty interested in Latin America. He taught regular courses on the geography and environment of Latin America and was a member of the first Executive Committee of the David Rockefeller Center for Latin American Studies. He organized the Rockefeller Center’s first international conference, Towards a Sustainable and Productive Agriculture in the Pampas.
In 1998, Solbrig received the International Prize for Biology, bestowed by the Emperor of Japan, for his work on the biology of biodiversity, with his work on dandelions singled out for special mention. Among other honors, Solbrig was a fellow of the American Academy of Arts and Sciences and received honorary degrees from the universities of Buenos Aires, La Plata, Mar del Plata, and Lomas de Zamora.
Solbrig is survived by his children from his first marriage, Hans and Heide, and by Dorothy, his wife of more than 50 years.
Respectfully submitted,
Peter Ashton Noel Michele Holbrook Naomi E. Pierce David Haig, Chair
Associate Professor Thomas Heldt joined the MIT faculty in 2013 as a core member of the Institute for Medical Engineering and Science (IMES) and the Department of Electrical Engineering and Computer Science. Additionally, Heldt is a principal investigator with MIT’s Research Laboratory of Electronics (RLE), and he directs the Integrative Neuromonitoring and Critical Care Informatics Group in IMES and RLE. He was recently named an associate director of IMES, where he will focus on internal affair
Associate Professor Thomas Heldt joined the MIT faculty in 2013 as a core member of the Institute for Medical Engineering and Science (IMES) and the Department of Electrical Engineering and Computer Science. Additionally, Heldt is a principal investigator with MIT’s Research Laboratory of Electronics (RLE), and he directs the Integrative Neuromonitoring and Critical Care Informatics Group in IMES and RLE. He was recently named an associate director of IMES, where he will focus on internal affairs, among other duties.
Heldt received his Medical Engineering and Medical Physics (MEMP) PhD from the Harvard-MIT Program in Health Sciences and Technology (HST) in 2004. Heldt's research interests include signal processing, estimation and identification of physiological systems, mathematical modeling, model identification to support real-time clinical decision making, monitoring of disease progression, and titration of therapy, primarily in neurocritical and neonatal critical care. Here, Heldt describes how he collaborates closely with MIT colleagues and others at Boston-area hospitals, and how his research uses and analyzes physiologic data to aid clinical action.
Q: How does your research apply to solving clinical needs?
A: We look at current clinical environments and observe the volumes of multimodal physiologic waveform data that are collected on patients in critical care, peri-operative care, or even emergency care. Much of this data is typically visually reviewed by the clinicians and subsequently discarded after a holding period of just a few days. We thus lose the opportunity for more systematic analyses and for deriving patient-specific insights. Critical to such analyses of these data streams is a deep understanding of the relevant physiology at the time scales of interest. We leverage insights from physiology, formulated as reduced order mathematical models capturing the essential mechanisms that enable clinical action. We have applied this approach successfully to estimate intracranial pressure noninvasively, to make diagnostic decisions based on the analysis of the shape of the capnogram, and, are currently using ultrasound-based approaches to detect embolic events in patients on life support, such as ventricular assist devices or extracorporeal membrane oxygenation.
Q: You work closely with colleagues across MIT, and with clinicians at Boston-area hospitals, including Boston Children’s Hospital (where you hold a courtesy research appointment in neurology), Boston Medical Center (neurosurgery), and Massachusetts General Hospital (emergency medicine). What has been the fruit of some of these collaborations — what is the impact on your research?
A: Boston is a fantastic place to conduct translational research that crosses from our laboratories at MIT into the clinical environments for validation in the actual target patient population! The collaborative disposition and forward-thinking mindset of our clinician colleagues have really been fundamentally enabling for our research and have provided amazing mentoring to our students, postdocs, and me. We have collected validation data in brain-injured patients in the ICUs [intensive care units] at Boston Medical Center, Boston Children’s Hospital (BCH), and Beth Israel Deaconess Medical Center (BIDMC); we have collected pilot and validation data for our capnography work in the emergency departments at BCH and BIDMC; we have collected data for our emboli work in the operating rooms and ICUs at BCH, and have analyzed the medical records of the neonatal ICU at BIDMC and the emergency department at Massachusetts General Hospital.
Our work with the neonatologist at BIDMC was focused on analyzing the monitoring alarm patterns in the neonatal ICU. We counted a staggering 177 alarms/baby/day, or one alarm every eight minutes on average, per baby. And this is a 54-bed neonatal ICU operating close to capacity every day! Such volumes of alarms contribute to noise pollution in an environment that should ideally be very calm. Additionally, since most of the alarms are nuisance alarms or do not require any clinical intervention, the clinical staff becomes desensitized to the alarm load and might end up ignoring truly important events. We analyzed the alarm patterns and alarm thresholds for a particular type of heart rate alarms and recommended a change in thresholds. This resulted in a 50 percent reduction in heart rate alarms per patient per day. Initially, the clinical staff had to file weekly reports to make sure the reduction in the alarm rate did not result in missed or adverse events. After about three months without a single reportable event, the hospital safety committee approved the change.
With colleagues from the MGH Department of Emergency Medicine, we developed and tested a triage rule to identify patients at risk of septic shock. At the time, the MGH ED [emergency department] saw more than 120,000 patients/year, and around 75 percent of patients ending up in the ICU with severe sepsis and septic shock came through the emergency department. Hence, ED triage was the first point of patient contact and the first opportunity to flag patients for possible sepsis and septic shock and initiation of early goal-directed therapy. One result of our work was a significant reduction in the time to appropriate antibiotic administration in the emergency department. The work was subsequently validated in other Partners hospitals and implemented in the electronic medical record system of Partners-affiliated hospitals.
Q: Can you talk a bit about your background, and about how you became interested in systems-physiology and biomedicine? What are your goals for your research, and for your career?
A: That is a longer story! In short, I started out studying physics back in Germany. After a while, I got interested in applying concepts I learned in physics to physiology and medicine, so I designed my own MD/PhD program by picking up medicine as a second major. Through some fortuitous events, I ended up attending surgeries for congenital heart defects for about a term. This was a very formative experience, and almost pushed me toward dropping physics and going all-out on becoming a surgeon. However, I had also always wanted to spend part of my education abroad and had applied to various universities in the U.S. I ended up getting admitted to the graduate physics program at Yale and spent a couple of years doing nonlinear optics. While I loved the work at Yale and had a fantastic mentor, I missed the clinical exposure and application of my work to medicine. I had heard about the HST program and decided to send in an application. I joined the MEMP program in 1997 and have been at MIT ever since.
In our current research, we are very interested in providing better monitoring modalities for patients with brain injuries. We are developing novel algorithmic and device approaches so we can replace the current invasive monitoring modalities with entirely noninvasive ones and provide additional clinically actionable information that gives insights on the physiology of the injured brain and can help guide treatment decision. I want to see some of these technologies through to routine deployment at the bedside.
The great thing about being in IMES and MIT is that everybody is very collaborative. What I am looking forward to is much of the same, working with colleagues in IMES on important problems that none of us is be able to tackle alone, but that together we have a real chance of tackling — and having fun along the way!
Cice Chen, a fourth-year chemistry, biochemistry, and neurobiology major in the College of Arts and Sciences, played a leading role in organizing the student-run National Research Conference at Penn.
Cice Chen, a fourth-year chemistry, biochemistry, and neurobiology major in the College of Arts and Sciences, played a leading role in organizing the student-run National Research Conference at Penn.
Jim Ellis II SM ’80 first learned about a special opportunity for members of the U.S. Coast Guard while stationed in Alaska.“My commander had received a notice from headquarters about this opportunity. They were asking for recommendations for an officer who might be interested,” says Ellis.The opportunity in question was the MIT Sloan Fellows program, today known as the MIT Sloan Fellows MBA (SFMBA) program. Every year for 50 years, the Coast Guard has nominated a service member to apply to the
Jim Ellis II SM ’80 first learned about a special opportunity for members of the U.S. Coast Guard while stationed in Alaska.
“My commander had received a notice from headquarters about this opportunity. They were asking for recommendations for an officer who might be interested,” says Ellis.
The opportunity in question was the MIT Sloan Fellows program, today known as the MIT Sloan Fellows MBA (SFMBA) program. Every year for 50 years, the Coast Guard has nominated a service member to apply to the program. Fifty Sloan Fellows and two Management of Technology participants have graduated since 1976, and the 53rd student is currently enrolled.
With his tour nearly over, Ellis followed his commander’s recommendation to apply. The Coast Guard nominated him and his application to MIT Sloan School of Management was accepted. In 1980, Ellis became the fifth-ever Coast Guard Sloan Fellow to graduate due to the special arrangement.
“My experience at MIT Sloan has been instrumental throughout my entire career,” says Ellis, who, with his wife Margaret Brady, designated half of their bequest to support graduate fellowships through the MIT Sloan Veterans Fund and half to establish the Ellis/Brady Family Fund to support the MIT Sloan Sustainability Initiative.
“The success of the people who have been through the program is a testament to why the Coast Guard continues the program,” he adds.
The desire to change the world
Throughout its 163-year history, MIT has maintained strong relationships with the U.S. military through programs like the MIT Reserve Officers' Training Corps, the 2N Graduate Program in Naval Architecture and Marine Engineering, and more.
The long-standing collaboration between MIT Sloan and the Coast Guard adds to this history. According to Johanna Hising DiFabio, assistant dean for executive degree programs at MIT Sloan, it demonstrates the Coast Guard’s dedication to leadership development, as well as the unique benefits MIT Sloan has to offer service members.
This is especially evident in the careers of the 52 Coast Guard Sloan Fellow alumni, many of whom the program often invites to speak to current students. “It is inspiring to hear our alumni reflect on how this education has significantly influenced their careers and the considerable impact they have had on the Coast Guard and the global community,” says DiFabio.
Captain Anne O’Connell MBA ’19 says, “It is very rewarding to be able to pay it back, to look for those officers coming up behind you who should absolutely be offered the same opportunities, and to help them chart that course. I think it's hugely important.”
One of the most notable Coast Guard Sloan Fellows is Retired Admiral Thad Allen SM ’89, who served as commandant of the Coast Guard from 2006 to 2010. One of the service’s youngest-ever flag officers, Allen is a figure beloved by current and former guardsmen. As commandant, he embraced new digital technologies, championed further arctic exploration, and solidified relations with the other armed services, federal partners, and private industry.
“When you leave MIT Sloan, you want to change the world,” says Allen.
Inspired by his father, who enlisted after the attack on Pearl Harbor, Allen attended the U.S. Coast Guard Academy and subsequently held various commands at sea and ashore during a career spanning four decades.
A few years before the end of his second decade, Allen learned about the Sloan Fellows Program through a service-wide solicitation. “The people I worked for believed this would be a great opportunity, and that it would match with my skill set,” says Allen. With the guidance of his senior captains, he applied to MIT Sloan.
Allen matriculated with a cohort whose members included Carly Fiorina SM ’89, former CEO of Hewlett-Packard; Daniel Hesse SM ’89, former CEO of Sprint; and Robert Malone SM ’89, former chair and president of BP America. Though he initially felt a sharp disconnect between his national service experience and their global private sector knowledge, Allen realized everyone in the cohort were becoming his peers.
Strong bonds with global perspectives
Like Allen, many of the Coast Guard Sloan Fellows acknowledge just how powerful their cohorts were when they matriculated, as well as how influential they have remained since.
“I have classmates with giant perspectives and unique expertise in places all over the world. It’s remarkable,” says Retired Commander Catherine Kang MBA ’06, who served as deputy of financial transformation for Allen.
The majority of SFMBA candidates come to Cambridge from around the world. For example, the 2023–24 cohort comprised 76 percent international citizens.
For Coast Guard Sloan Fellows with decades of domestic experience, their cohort’s global perspectives are as novel as they are informative. As Retired Captain Gregory Sanial SM ’07 explains, “We had students from 30 to 40 different countries, and I had the opportunity to learn a lot about different parts of the world and open up my mind to many different experiences.”
After the Coast Guard, Sanial pursued a doctoral degree in organizational leadership and a career in higher education that, professionally, has kept him stateside. Yet the bonds he built at MIT Sloan remain just as strong and as international as they were when he first arrived.
Many Coast Guard Sloan Fellows attribute this to the program’s focus on cooperation and social events.
“What impressed me most when I first got there were the team-building exercises, which made a difference in getting a group of diverse people to really gel and work together,” says Retired Captain Lisa Festa SM ’92, SM ’99. “MIT Sloan takes the time at the beginning to invest in you and to make sure you know the people you’re going through school with for the next year.”
The most recent Coast Guard Sloan Fellow alumnus, Commander Mark Ketchum MBA ’24, says his cohort’s connections are still fresh, but he believes they will last a lifetime. Considering the testimonies of his predecessors, this may very well be the case.
“My cohort made me stronger, and I would like to think that I imparted my strengths onto my classmates,” says Ketchum.
Big challenges with high impacts
Before earning the Coast Guard’s nomination and an acceptance letter from the SFMBA program, potential Sloan Fellows have already served in various leadership positions. Once they graduate, the recognition and distinction that comes with an MIT Sloan degree is quick.
So, too, are the more challenging leadership tracks.
After graduation, Allen served as deputy program manager for the Coast Guard’s shipbuilding program at the behest of the then-commandant. “For the agency head to say, ‘This is a bad problem, so I’m picking the next graduate from MIT Sloan,’ is indicative of the program’s cachet value,” he says. Allen then served in the office of budget and programs, a challenging and rewarding post that has become a hub for Coast Guard Sloan Fellows past, present, and future.
Like Rear Admiral Jason Tama MBA ’11 and Captain Brian Erickson MBA ’21, both of whom credit the office with introducing them to the vigorous work ethic necessary for both obtaining an MIT Sloan education and for becoming an effective leader.
“Never in a thousand years would I have gone on the resource management path until a mentor told me it would be one of the most challenging and high-impact things I could do,” says Tama. “You can never be fully prepared for the Sloan Fellows experience, but it can and will change you for the better. It changed the way I approach problems and challenges.”
“I owe MIT for the senior-level opportunities I’ve had in this organization, and I will probably owe them for some of the opportunities I may get in the future,” adds Erickson. “You should never, ever say no to this opportunity.”
From the early cohorts of Ellis, Allen, and Festa, to more recent alumni like O’Connell, Kang, and Ketchum, Coast Guard Sloan Fellows from the past half-century echo Erickson and Tama’s sentiments when asked about how MIT Sloan has changed them. Words like “challenge,” “opportunity,” and “impact” are used often and with purpose.
They believe joining the SFMBA program as up-and-coming senior leaders is an incredible opportunity for the individual and the Coast Guard, as well as the MIT community and the world at large.
“I am excited to see this tradition carry on,” says Tama. “I hope others who are considering it can see the potential and the value, not only for themselves, but for the Coast Guard as well.”
Participation by U.S. Coast Guard members in this highlight of prior MIT Sloan Fellows is not intended as, and does not constitute an endorsement of, the MIT Sloan Fellows MBA program or MIT by either the Department of Homeland Security or the U.S. Coast Guard.
But, writing in the journal Nature Geoscience, an international group of scientists, led by the University of Cambridge and the University of Århus, argue that tree planting at high latitudes will accelerate, rather than decelerate, global warming.
As the climate continues to warm, trees can be planted further and further north, and large-scale tree-planting projects in the Arctic have been championed by governments and corporations as a way to mitigate the worst effects of climate change.
How
But, writing in the journal Nature Geoscience, an international group of scientists, led by the University of Cambridge and the University of Århus, argue that tree planting at high latitudes will accelerate, rather than decelerate, global warming.
As the climate continues to warm, trees can be planted further and further north, and large-scale tree-planting projects in the Arctic have been championed by governments and corporations as a way to mitigate the worst effects of climate change.
However, when trees are planted in the wrong places - such as normally treeless tundra and mires, as well as large areas of the boreal forest with relatively open tree canopies - they can make global warming worse.
According to lead author Assistant Professor Jeppe Kristensen from Aarhus University in Denmark, the unique characteristics of Arctic and sub-Arctic ecosystems make them poorly suited for tree planting for climate mitigation.
“Soils in the Arctic store more carbon than all vegetation on Earth,” said Kristensen. “These soils are vulnerable to disturbances, such as cultivation for forestry or agriculture, but also the penetration of tree roots. The semi-continuous daylight during the spring and early summer, when snow is still on the ground, also makes the energy balance in this region extremely sensitive to surface darkening, since green and brown trees will soak up more heat from the sun than white snow.”
In addition, the regions surrounding the North Pole in North America, Asia and Scandinavia are prone to natural disturbances - such as wildfires and droughts - that kill off vegetation. Climate change makes these disturbances both more frequent and more severe.
“This is a risky place to be a tree, particularly as part of a homogeneous plantation that is more vulnerable to such disturbances,” said Kristensen. “The carbon stored in these trees risks fuelling disturbances and getting released back to the atmosphere within a few decades.”
The researchers say that tree planting at high latitudes is a prime example of a climate solution with a desired effect in one context but the opposite effect in another.
“The climate debate is very carbon-focused because the main way humans have modified the Earth’s climate in the last century is through emitting greenhouse gases from burning fossil fuels,” said Kristensen. “But at the core, climate change is the result of how much solar energy entering the atmosphere stays, and how much leaves again – Earth’s so-called energy balance.”
Greenhouse gases are one important determinant of how much heat can escape our planet’s atmosphere. However, the researchers say that at high latitudes, how much sunlight is reflected back into space, without being converted into heat (known as the albedo effect), is more important than carbon storage for the total energy balance.
The researchers are calling for a more holistic view of ecosystems to identify truly meaningful nature-based solutions that do not compromise the overall goal: slowing down climate change.
“A holistic approach is not just a richer way of looking at the climate effects of nature-based solutions, but it’s imperative if we’re going to make a difference in the real world,” said senior author Professor Marc Macias-Fauria, from the University of Cambridge’s Scott Polar Research Institute.
However, the researchers recognise that there can be other reasons for planting trees, such as timber self-sufficiency, but these cases do not come with bonuses for climate mitigation.
“Forestry in the far North should be viewed like any other production system and compensate for its negative impact on the climate and biodiversity,” said Macias-Fauria. “You can’t have your cake and eat it, and you can’t deceive the Earth. By selling northern afforestation as a climate solution, we’re only fooling ourselves.”
So how can we moderate global warming at high latitudes? The researchers suggest that working with local communities to support sustainable populations of large herbivores, such as caribou, could be a more viable nature-based solution to climate change in Arctic and subarctic regions than planting millions of trees.
“There is ample evidence that large herbivores affect plant communities and snow conditions in ways that result in net cooling,” said Macias-Fauria. “This happens both directly, by keeping tundra landscapes open, and indirectly, through the effects of herbivore winter foraging, where they modify the snow and decrease its insulation capacity, reducing soil temperatures and permafrost thaw.”
The researchers say it’s vital to consider biodiversity and the livelihoods of local communities in the pursuit of nature-based climate solutions.
“Large herbivores can reduce climate-driven biodiversity loss in Arctic ecosystems and remain a fundamental food resource for local communities,” said Macias-Fauria. “Biodiversity and local communities are not an added benefit to nature-based solutions: they are fundamental. Any nature-based solutions must be led by the communities who live at the front line of climate change.”
Explore more discoveries, innovations and research on climate and nature at the University of Cambridge: www.cam.ac.uk/climate-and-nature
Tree planting has been widely touted as a cost-effective way of reducing global warming, due to trees’ ability to store large quantities of carbon from the atmosphere.
Campus & Community
When your goal is literally sky-high — and you reach it
Faith Schmidt ’25 inside St. Paul’s Parish in Harvard Square. Photo by Grace DuVal
Nick Economides
November 7, 2024
4 min read
Third-generation military, Faith Schmidt ’25 is set to soar
When field hockey midfielder Faith Schmidt ’25 graduates in the spring, she will carry on a storied family legacy, one that takes plac
When your goal is literally sky-high — and you reach it
Nick Economides
4 min read
Third-generation military, Faith Schmidt ’25 is set to soar
When field hockey midfielder Faith Schmidt ’25 graduates in the spring, she will carry on a storied family legacy, one that takes place 45,000 feet in the air.
The Air Force Reserve Officers’ Training Corps cadet recently received her pilot slot from the Air Force. Soon after Commencement, she will find out her base assignment, or where she will spend roughly the next two years in flight school and training.
“I applied for the pilot slot my junior year, one of the most competitive slots to get,” the St. Louis, Missouri, native said. “I knew I had a competitive package and there were some good signs coming in. When it was signed, sealed, and delivered, I was so happy, celebrating with my fellow cadets.
“I FaceTimed with my dad, and he just hopped out of a fighter jet at Boeing. He flipped the camera around to the fighter jet and told me, ‘You’ll be in there one day!’”
The engineering sciences concentrator at the Harvard John A. Paulson School of Engineering and Applied Sciences comes from a family of veterans. Her father spent more than 20 years as a fighter pilot for the Navy, and now works as a test pilot for Boeing. Both her grandfathers and her godfather also served in the military.
“When my dad was growing up, my grandpa would tell him about the aircraft carriers he worked on during the Korean War,” Schmidt said. “My dad was fascinated by that experience, and he joined Navy ROTC halfway through his college experience. There is a long line of military history in my family, but just looking at their passion for service, the dedication for the people around them, all that really pushed me to go the military aviation route.”
Her earliest impressions of life in the clouds began in early elementary school when she watched her dad and her uncles, also pilots, fly together. When her father would ask his children who wanted to go up in the air, her hand immediately shot up. “I knew I wanted to go, and those little moments throughout my life pushed me to fly,” Schmidt said.
“Faith has been climbing high and jumping off those heights since she was a toddler, ranging from gymnastics, competitive diving, and pole vaulting,” said her mother, Cathy Schmidt.
During her senior year of high school, Schmidt applied for ROTC scholarships as she found another reason to be drawn to the Air Force: the design of fighter jets. At Harvard, she balanced her engineering course load with commitments as a cadet, field hockey player, and member of the Catholic Center.
“Harvard is one of the only places I could have gone where everything works all together,” she said, expressing gratitude for her coaches and teammates.
“They have been such a backbone for me, I don’t think I could’ve done ROTC and engineering without them,” Schmidt said. “Just having two hours of practice every day, with some of the most amazing women I know, is such a great reset. I’ve been grateful for all the smiles in the locker room and having the opportunity to chase that common goal. Whenever they see me on campus in uniform, they hype me up.”
“We know some of the sacrifices that lie ahead for her,” Schmidt’s mother said. “We respect her decision to face those challenges with courage and commitment. We could not be more proud that she has chosen to serve in this honorable profession.”
Campus & Community
The long Crimson line
Ed Somuk ’27 (from left), Alexandria Durrant ’28, and Shane Rice ’25.Courtesy photos
Christy DeSmith
Harvard Staff Writer
November 7, 2024
7 min read
Number of armed services veterans at Harvard on the rise as University ramps up outreach, support
Shane Rice ’25 was visiting his parents in Virginia and preparing for his first combat deployment
Number of armed services veterans at Harvard on the rise as University ramps up outreach, support
Shane Rice ’25 was visiting his parents in Virginia and preparing for his first combat deployment. Alexandria Durrant ’28 was recovering after a 12-hour medical shift at a military base in Hawaii. And Ed Somuk ’27, a retired Marine, was busy potty-training the youngest of his three children.
“I looked at my phone, and all I could register was: ‘Congratulations. Harvard. Welcome Class of 2027,’” recalled Somuk, 49, a history concentrator who recently retired as a master sergeant after 26 years of service. “I had about six seconds to immerse myself in it. And then I had to get into that bathroom because I had a kid in there.”
The number of U.S. military veterans at the College has climbed in the last half-dozen years, thanks to stepped-up outreach and word of mouth. In 2018, a total of eight veterans were enrolled at the College. This fall, 21 started as first-year or transfer students, with a total of 78 current students having completed service in the armed forces.
“Our veterans bring a diversity of perspective to Harvard College and make deeply valued contributions here,” said Joy St. John, director of admissions. “Additionally, public service is core to our mission, and time in the armed forces constitutes one of the most meaningful acts of service. Our commitment to recruiting and admitting more veterans is motivated by this.”
There is a thread of military service running through Harvard’s long history. That legacy is written all over Memorial Hall, its walls etched with the names of 136 Harvard associates lost during the Civil War. Likewise, the walls of Memorial Church bear hundreds of names representing faculty and alumni killed during World War I and World War II.
The presence of U.S. service members on campus began fading around the Vietnam era, but the trend started to reverse early in the 21st century. In 2005, Kit Parker, Tarr Family Professor of Bioengineering and Applied Physics, started bringing veterans to campus for summer opportunities via the National Science Foundation’s Research Experiences for Undergraduates program.
“We found these veterans brought an uncommon skill set in terms of maturity and work ethic,” remembered Parker, who is also a colonel with more than 30 years of service in the U.S. Army Reserve. “You’ve got to stay past midnight to get an experiment working? It’s no problem if you’ve been in the military. Night ops is what we do!”
Parker went on to join efforts by 2022 Harvard Medal winner Tom Reardon ’68 to improve support for veterans campuswide while easing obstacles for those applying. “Maybe they were late bloomers academically, but something about their military records revealed a potential, a talent, a desire, and certainly a focus,” Parker said.
Additional efforts were made to support soldiers returning from the American-led global war on terror launched after the attacks of Sept. 11, 2001. In 2006, Reardon, who served in the Army during Vietnam, established the Harvard Veterans Alumni Association, which seeks to strengthen connections between veterans on campus and in the alumni community. President Drew Faust announced in 2009 that the University would participate in the Yellow Ribbon Program, helping veterans to pay tuition costs exceeding what is covered under the Post-9/11 GI Bill.
“At one point in the 2000s — between Harvard College students, Research Experiences for Undergraduates, and staff members I had hired — there was more combat experience in my laboratory than most infantry platoons in the Army,” Parker said.
The 2010s saw the University deepening its commitment. In 2014, Harvard started partnering with the Warrior-Scholar Project, a nonprofit offering free academic boot camps at top U.S. universities.
Attending a week-long session at Columbia University last summer gave Durrant, 24, the confidence to apply to Harvard. “It taught me to challenge myself and to understand that being an active-duty veteran is not a weakness; it’s actually a strength,” said the first-year who grew up in North Carolina and fell in love with healthcare while serving as a Navy hospital corpsman. “Right now I’m leaning toward a concentration in government with a secondary in global health and health policy. However, I still want to be ambitious and get the prerequisites for medical school.”
In 2017, Harvard College joined Service to School’s VetLink program, which provides free counseling for veterans applying to college. Somuk had mentally bookmarked its resources after seeing ads on social media. In 2021, he was freshly retired and living with his family near Fairbanks, Alaska, when his wife, an attorney with the Air Force JAG Corps, received orders to head to Hanscom Air Force Base about 20 miles northwest of Boston. Somuk, who grew up in Connecticut, gave Service to School a call.
“Have you ever thought about Harvard?” asked the first counselor he reached.
“I think of Harvard all the time,” Somuk remembered joking. “I think it’s a great institution that will never, ever let me inside their gates.” Today, the Dudley Co-op affiliate commutes to campus from Hanscom, often making the 40-minute trip multiple times per day while juggling courses and study halls with family obligations.
Veterans of militaries worldwide eventually organized a Harvard College student group, which was officially recognized in 2018. Rice, 25, was still stationed in Okinawa, Japan, when he stumbled upon the undergraduate-run organization five years ago. The anthropology concentrator and Cabot House resident remembered sitting in his barracks one day when he grabbed his phone and typed: “good schools USA.”
Harvard popped up. Rice, who was at the time a mortarman on his second deployment, did a bit more searching on the application process. “But never did I take it that seriously until I found Harvard Undergraduate Veteran Organization,” recalled Rice, who is studying abroad this semester at Trinity College in Dublin.
A former HUVO president even took the time to offer a bit of counsel over Zoom. “He was also a Marine, so we clicked over that,” Rice said. “That was the moment I realized this wasn’t just a pipe dream. People have done it!”
Another support arrived in 2020 with the appointment of the College’s first program manager for military student services. Craig Rodgers, Ed.M. ’96, a former reservist who matriculated in the Army ROTC program at MIT, works to counsel and connect veterans and ROTC cadets on campus.
“He does a really good job of letting us know what’s going on in the veterans’ community,” said Durrant, who underscored the comfort she finds in gathering with this group. “Sometimes it’s nice to just be able to talk in military jargon with people who understand.”
The College isn’t the only Harvard School with strong U.S. military representation. At the Kennedy School this fall, 76 students are on active duty or veterans. The Law School has 70, and the Extension School counts 423 veterans or active-duty U.S. military members taking courses this semester.
Parker emphasized that more can be done to support this growing population. Adding accessible family housing options near campus would make admission possible for a greater number of veterans with physical disabilities. Bolstering mental health supports would serve those dealing with post-combat stress. He called for a greater awareness of how the Americans With Disabilities Act uniquely impacts war veterans.
But most will find the campus welcoming, with military training increasingly understood as an academic asset, he said. “It’s a great time to be a veteran at Harvard.”
A book edited by Assistant Professor Sreeja Nair from the Lee Kuan Yew School of Public Policy and Dr Navarun Varma, Senior Lecturer from Residential College 4, titled “Emerging Pedagogies for Policy Education: Insights from Asia", has been recognised as the 2024 Outstanding Scholarship of Teaching and Learning Book Award Winner by the Network of Schools of Public Policy, Affairs and Administration (NASPAA). The NUS team received the prestigious prize at the NASPAA’s Annual Conference which took
A book edited by Assistant Professor Sreeja Nair from the Lee Kuan Yew School of Public Policy and Dr Navarun Varma, Senior Lecturer from Residential College 4, titled “Emerging Pedagogies for Policy Education: Insights from Asia", has been recognised as the 2024 Outstanding Scholarship of Teaching and Learning Book Award Winner by the Network of Schools of Public Policy, Affairs and Administration (NASPAA). The NUS team received the prestigious prize at the NASPAA’s Annual Conference which took place from 23 to 25 October 2024 in Washington DC.
The 13-chapter, 254-page collection is the culmination of effort and academic excellence by 22 authors, who are active in both policy research and design or teaching of policy-oriented courses. These authors, who have worked or are currently working for Asian universities and institutions of higher education, include Professor Nancy Gleason, Professor Robert Wasson, Associate Professor Lakshminarayanan Samavedham, Ms Yong Bee Choon, Dr Lynette Tan and Dr Naviyn Prabhu Balakrishnan.
Presented in two parts, the book highlights key trends driving changes in policy education and presents a variety of pedagogies (or teaching methods) aimed at equipping educators and policy designers to have a greater impact on learning and policy practice. It also brings to the table an Asian perspective in this field, drawing on the authors' experiences in teaching students at undergraduate and postgraduate levels, as well as in professional programmes such as executive education, training, and capacity building for mid-career professionals and practitioners across selected universities in Asia.
"When I first shared my vision for a book that merges pedagogy and content for a more interdisciplinary approach to the teaching and learning of policy studies, I faced scepticism. Some advised me to keep pedagogy and content as separate pursuits. However, courses at the NUS Centre for Teaching, Learning and Technology sparked my interest in pedagogical content knowledge and enabled me to pursue this vision," said Senior Lecturer Dr Varma, who also shared that this recognition from NASPAA has motivated him to further develop their learning community, the ‘Design Principles for Impact-driven Policy Education’ at NUS.
“Winning an award from NASPAA, a premier global accreditation body for public service education is a recognition of the rise of policy education in Asia” said Asst Prof Nair. “Curating this volume has been a rewarding journey, transforming a project borne out of sheer curiosity into a long-term research agenda,” she added.
The University of Melbourne celebrated Diwali on its Parkville campus last week, with more than 1000 students and staff celebrating the events and festivities.
The University of Melbourne celebrated Diwali on its Parkville campus last week, with more than 1000 students and staff celebrating the events and festivities.
The launch of the National Graduate Research Innovation Programme (National GRIP) is a significant advancement for Singapore’s deep tech ecosystem. Set to launch in January 2025, National GRIP aims to train up to 300 start-up teams by 2028 and foster over 150 spin-offs by 2030, backed by a commitment of S$50 million in financial and in-kind support over five years. This collaborative effort between the National Research Foundation (NRF), NUS and the Nanyang Technological University (NTU Singapor
The launch of the National Graduate Research Innovation Programme (National GRIP) is a significant advancement for Singapore’s deep tech ecosystem. Set to launch in January 2025, National GRIP aims to train up to 300 start-up teams by 2028 and foster over 150 spin-offs by 2030, backed by a commitment of S$50 million in financial and in-kind support over five years. This collaborative effort between the National Research Foundation (NRF), NUS and the Nanyang Technological University (NTU Singapore) was announced by Deputy Prime Minister and Chairman of NRF, Mr Heng Swee Keat at the Research, Innovation and Enterprise Deep Tech Day, on the second day of the Singapore Week of Innovation & Technology (SWITCH) on 29 October 2024.
National GRIP integrates two successful incubator programmes—NUS’ Graduate Research Innovation Programme 2.0 (NUS GRIP 2.0) and NTU’s Lean Launchpad (LLP 2.0). Together, these programmes have successfully incubated over 400 start-up teams, creating close to 160 spin-offs. The new programme will be a comprehensive incubator programme designed to bridge the gap between scientific research and market application. It will support start-up teams by helping them refine their initial ideas, validate market needs, and design robust business models through a structured programme framework. Participants will also benefit from personalised mentorship from industry leaders and access to a network of experts.
Associate Professor Benjamin Tee, Vice President (Ecosystem Building) at NUS Enterprise said, “We are pleased to partner with NTU in launching the National GRIP initiative with the support of NRF. This initiative integrates the two leading programmes to further mature our deep tech start-up ecosystem in Singapore, equipping teams with essential building blocks from idea validation to market readiness. By integrating the best practices and insights from our individual programmes, we are confident that National GRIP will accelerate growth of globally competitive deep tech start-ups by providing a well-structured end-to-end support that closely aligns with our nation’s RIE strategic plans.”
Accelerating start-ups' growth and success
Designed for founders, innovators, and researchers from Singapore’s autonomous universities (AUs) and A*STAR research institutes (RIs), the 12-month programme offers access to a dynamic network of resources. They can leverage intellectual property from AUs, and A*STAR RIs have the opportunity to join existing teams in NUS GRIP 2.0 and LLP 2.0. With this extensive pool of resources, National GRIP fosters deep tech venture creation that draws on each institution’s distinctive strengths.
As a platform that aggregates a critical mass of deep tech start-ups, teams can be effectively matched with suitable investors and vice versa. National GRIP will deepen partnerships with deep tech venture capitalists (VCs) and venture builders, such as current NUS GRIP 2.0 strategic partners Legend Capital, SOSV Investments LLC and Vertex Holdings, by involving them early in the programme to provide stronger commercial insights to the teams. These partners help to support start-ups by increasing their investment readiness and access to specialised markets and deepening their industry expertise.
Additionally, there are plans to leverage the VCs’ networks to attract experienced founders who can team up with the start-up teams as co-founders, advisors or collaborators to accelerate the start-ups’ growth. To help start-ups scale and expand internationally, National GRIP will also act as a springboard for start-ups to go beyond local connections, leveraging the global network of NUS BLOCK71.
Dr Wen Hsieh, Founding Managing Partner, Matter Venture Partners, another strategic partner of NUS’ GRIP 2.0, said, “National GRIP is very timely in its launch. Deep tech innovations are playing critical roles in the rapid advancement of semiconductors, electronics, robotics, AI, manufacturing, energy infrastructure, space tech, and life sciences. National GRIP streamlines the creation of deep tech start-ups in Singapore, enabling them to hone their business plans, build founding teams, raise seed financing, and formulate collaboration strategies with industry players.” National GRIP offers venture capital firms opportunities to partner and support these start-ups, thus not only enhancing the success rate of local deep tech start-ups but also attracting deep tech entrepreneurs and talent from beyond Singapore. It’s a privilege for my firm and I to be closely associated with the GRIP community," he added.
Many aspiring start-ups and founders among NUS GRIP 2.0 alumni
NUS GRIP 2.0 has supported researchers and entrepreneurs in transforming university research into market-ready innovations. Since its inception in 2018, NUS GRIP 2.0 has nurtured nearly 170 start-up teams, with around 100 successfully evolving into spin-offs, collectively raising almost S$65 million in external funding.
Among the start-ups is Kit Yong, Founder of Forte Biotech and former NUS GRIP 2.0 participant, who was also recognised in the Forbes 30 Under 30 list for 2024. Sharing his perspectives on the programme’s potential, Kit said that the combined cachet of National GRIP, alongside the 'Made in Singapore' brand, lends significant weight and visibility to start-ups, especially when expanding their venture in overseas markets. He added that it is easier to make an impact together when Singaporean brands band together and venture overseas.
When asked what advice he would offer aspiring start-ups, Kit highlighted the importance of achieving product-market fit. “Developing technology just for the sake of it isn’t sufficient. It’s crucial to align with market demands and ensure the product has a meaningful purpose.”
As National GRIP gears up for its launch next year, Singapore’s start-up ecosystem is set for further growth, advancing the nation’s role as a leader in deep tech innovation and entrepreneurship. For more information on how to participate, prospective founders and teams can visit the National GRIP website.
CNA Online, 3 November 2024Channel 5 News, 3 November 20248world Online, 3 November 2024Suria News Online, 3 November 2024Vasantham News Online, 3 November 2024The Straits Times, 4 November 2024, Singapore, pA15Lianhe Zaobao, 4 November 2024, Front PageBerita Harian, 4 November 2024, p2Tamil Murasu, 4 November 2024, p2
By Adj Assoc Prof Jeremy Lim, from the Saw Swee Hock School of Public Health at NUS and Koh Lin Pin, an incoming student at the Yong Loo Lin School of Medicine at NUSCNA Online, 30 October 2024
By Adj Assoc Prof Jeremy Lim, from the Saw Swee Hock School of Public Health at NUS and Koh Lin Pin, an incoming student at the Yong Loo Lin School of Medicine at NUS
CNA, 29 October 2024Channel 5 News, 29 October 20248world Online, 29 October 2024CNA938, 29 October 2024Money 89.3FM, 29 October 2024Tamil Murasu Online, 29 October 2024The Straits Times, 30 October 2024, The Big Story, pA4The Business Times, 30 October 2024, p4Lianhe Zaobao, 30 October 2024, Singapore, p8Berita Harian, 30 October 2024, p2
By studying changes in gene expression, researchers learn how cells function at a molecular level, which could help them understand the development of certain diseases.But a human has about 20,000 genes that can affect each other in complex ways, so even knowing which groups of genes to target is an enormously complicated problem. Also, genes work together in modules that regulate each other.MIT researchers have now developed theoretical foundations for methods that could identify the best way t
By studying changes in gene expression, researchers learn how cells function at a molecular level, which could help them understand the development of certain diseases.
But a human has about 20,000 genes that can affect each other in complex ways, so even knowing which groups of genes to target is an enormously complicated problem. Also, genes work together in modules that regulate each other.
MIT researchers have now developed theoretical foundations for methods that could identify the best way to aggregate genes into related groups so they can efficiently learn the underlying cause-and-effect relationships between many genes.
Importantly, this new method accomplishes this using only observational data. This means researchers don’t need to perform costly, and sometimes infeasible, interventional experiments to obtain the data needed to infer the underlying causal relationships.
In the long run, this technique could help scientists identify potential gene targets to induce certain behavior in a more accurate and efficient manner, potentially enabling them to develop precise treatments for patients.
“In genomics, it is very important to understand the mechanism underlying cell states. But cells have a multiscale structure, so the level of summarization is very important, too. If you figure out the right way to aggregate the observed data, the information you learn about the system should be more interpretable and useful,” says graduate student Jiaqi Zhang, an Eric and Wendy Schmidt Center Fellow and co-lead author of a paper on this technique.
Zhang is joined on the paper by co-lead author Ryan Welch, currently a master’s student in engineering; and senior author Caroline Uhler, a professor in the Department of Electrical Engineering and Computer Science (EECS) and the Institute for Data, Systems, and Society (IDSS) who is also director of the Eric and Wendy Schmidt Center at the Broad Institute of MIT and Harvard, and a researcher at MIT’s Laboratory for Information and Decision Systems (LIDS). The research will be presented at the Conference on Neural Information Processing Systems.
Learning from observational data
The problem the researchers set out to tackle involves learning programs of genes. These programs describe which genes function together to regulate other genes in a biological process, such as cell development or differentiation.
Since scientists can’t efficiently study how all 20,000 genes interact, they use a technique called causal disentanglement to learn how to combine related groups of genes into a representation that allows them to efficiently explore cause-and-effect relationships.
In previous work, the researchers demonstrated how this could be done effectively in the presence of interventional data, which are data obtained by perturbing variables in the network.
But it is often expensive to conduct interventional experiments, and there are some scenarios where such experiments are either unethical or the technology is not good enough for the intervention to succeed.
With only observational data, researchers can’t compare genes before and after an intervention to learn how groups of genes function together.
“Most research in causal disentanglement assumes access to interventions, so it was unclear how much information you can disentangle with just observational data,” Zhang says.
The MIT researchers developed a more general approach that uses a machine-learning algorithm to effectively identify and aggregate groups of observed variables, e.g., genes, using only observational data.
They can use this technique to identify causal modules and reconstruct an accurate underlying representation of the cause-and-effect mechanism. “While this research was motivated by the problem of elucidating cellular programs, we first had to develop novel causal theory to understand what could and could not be learned from observational data. With this theory in hand, in future work we can apply our understanding to genetic data and identify gene modules as well as their regulatory relationships,” Uhler says.
A layerwise representation
Using statistical techniques, the researchers can compute a mathematical function known as the variance for the Jacobian of each variable’s score. Causal variables that don’t affect any subsequent variables should have a variance of zero.
The researchers reconstruct the representation in a layer-by-layer structure, starting by removing the variables in the bottom layer that have a variance of zero. Then they work backward, layer-by-layer, removing the variables with zero variance to determine which variables, or groups of genes, are connected.
“Identifying the variances that are zero quickly becomes a combinatorial objective that is pretty hard to solve, so deriving an efficient algorithm that could solve it was a major challenge,” Zhang says.
In the end, their method outputs an abstracted representation of the observed data with layers of interconnected variables that accurately summarizes the underlying cause-and-effect structure.
Each variable represents an aggregated group of genes that function together, and the relationship between two variables represents how one group of genes regulates another. Their method effectively captures all the information used in determining each layer of variables.
After proving that their technique was theoretically sound, the researchers conducted simulations to show that the algorithm can efficiently disentangle meaningful causal representations using only observational data.
In the future, the researchers want to apply this technique in real-world genetics applications. They also want to explore how their method could provide additional insights in situations where some interventional data are available, or help scientists understand how to design effective genetic interventions. In the future, this method could help researchers more efficiently determine which genes function together in the same program, which could help identify drugs that could target those genes to treat certain diseases.
This research is funded, in part, by the U.S. Office of Naval Research, the National Institutes of Health, the U.S. Department of Energy, a Simons Investigator Award, the Eric and Wendy Schmidt Center at the Broad Institute, the Advanced Undergraduate Research Opportunities Program at MIT, and an Apple AI/ML PhD Fellowship.
Penn researchers discovered “wing spreading” in Drosophila santomea, research that hints at a rare, novel finding and offers insights into an underrepresented area in sexual reproduction research: female-initiated behaviors.
Penn researchers discovered “wing spreading” in Drosophila santomea, research that hints at a rare, novel finding and offers insights into an underrepresented area in sexual reproduction research: female-initiated behaviors.
As the new director of the Program in Gender, Sexuality, and Women’s Studies and the Center for Research in Feminist, Queer, and Transgender Studies, Jessa Lingel creates community and belonging on campus.
As the new director of the Program in Gender, Sexuality, and Women’s Studies and the Center for Research in Feminist, Queer, and Transgender Studies, Jessa Lingel creates community and belonging on campus.
Illustration by Andrew Baker/Ikon Images
Nation & World
‘Harvard Thinking’: Are optimists the realists?
Humanity is doing better than ever yet it often doesn’t seem that way. In podcast, experts make the case for fact-based hope.
Samantha Laine Perfas
Harvard Staff Writer
November 6, 2024
long read
It may feel like the world is slowly devolving into one big dumpster fire. But that’s h
Humanity is doing better than ever yet it often doesn’t seem that way. In podcast, experts make the case for fact-based hope.
Samantha Laine Perfas
Harvard Staff Writer
long read
It may feel like the world is slowly devolving into one big dumpster fire. But that’s hardly the case.
“For all the problems we have today, the problems of yesterday usually were worse,” said Steven Pinker, Ph.D. ’79, the Johnstone Family Professor of Psychology. “Things really have gotten better [and] not by themselves; it’s taken human effort and human ingenuity and human commitment.”
In many measurable ways, global progress has far exceeded failure. Jane Nelson, the founding director of the Corporate Responsibility Initiative at Harvard Kennedy School, points out that of the United Nation’s 24 indicators of their Sustainable Development Goals, 18 have improved since 2015. During her career she’s seen enormous changes for the better, and that gives her hope when she looks to the future.
“We know what is needed to move forward and make progress. What are the policies that need to be changed? What are the new business models and market incentives?” she said. “It’s a question then of building the political will and public narrative to get there.”
Tal Ben-Shahar ’96, Ph.D. ’04, who directs the master’s degree program in happiness studies at Centenary University and formerly taught at Harvard, said embracing “evidence-based optimism” grounds us in reality. Alternatively, when we experience “detached optimism,” it can lead to toxic positivity. This “just be happy” attitude pervades our culture and can ironically lead to hopelessness and despair.
“Two seemingly opposing ideas are optimism and pessimism,” he said. “[We can] believe that things are going well and will continue to go well and at the same time … see and recognize the things that are not going well and that need to be improved.”
In this episode of “Harvard Thinking,” host Samantha Laine Perfas speaks with Ben-Shahar, Nelson, and Pinker about choosing optimism.
Transcript
Steven Pinker: When you plot measures of human well-being over time, like safety, health, longevity, maternal mortality, child mortality, human rights, they get better. For all the problems we have today, the problems of yesterday usually were worse.
Laine Perfas: Things aren’t what they used to be: They’re actually better. Yet even though many measures show how much progress we’ve made, many people feel like things are worse than ever. It’s led to a cycle of pessimism that leads to further despair and anxiety.
How do we break this cycle and intentionally choose optimism?
Welcome to “Harvard Thinking,” a podcast where the life of the mind meets everyday life. Today, I’m joined by:
Jane Nelson: Jane Nelson, and over the past 20 years I’ve served as the founding director of the Corporate Responsibility Initiative at Harvard Kennedy School.
Laine Perfas: She’s spent her career figuring out how companies, communities, nonprofits, and governments can work together to create a more equitable and sustainable world. Then:
Tal Ben-Shahar: Tal Ben-Shahar. I spent 15 years at Harvard as an undergraduate and graduate student and then taught two classes on positive psychology and the psychology of leadership.
Laine Perfas: He’s currently the director of the master’s degree program in happiness studies at Centenary University. And finally:
Pinker: Steve Pinker. I am a professor in the Department of Psychology at Harvard.
Laine Perfas: Pinker’s books include the bestsellers, “The Better Angels of Our Nature” and “Enlightenment Now: The Case for Reason, Science, Humanism, and Progress.” His work shows that progress isn’t just a mindset, but a statistical reality.
And I’m Samantha Laine Perfas, your host and a writer for the Harvard Gazette. In this episode, we’ll be discussing the value of optimism and how to embrace it when it feels like things are falling apart.
I thought it would be good to talk about how each of you think about optimism. Is it simply trying to be positive all the time or is it something more?
Steven Pinker: I’ve often been called an optimist because of the hundred or so graphs in the two books showing that when you plot measures of human well-being over time, like safety, health, longevity, maternal mortality, child mortality, human rights, they get better. For all the problems we have today, the problems of yesterday usually were worse. And I prefer to talk about progress because optimism, for some people, can be depressing. If the best you can tell me is, “Put a smile on your face and have a happier attitude and see the glass is half full” … I think those can’t be helpful. But the point is that objectively speaking, as best we can determine, things really have gotten better. Not by themselves. It’s taken human effort and human ingenuity and human commitment. But it is easy looking on the undeniable problems today to assume that things were better in the past, whereas I think objectively the conclusion we have to come to is it’s the other way around.
Jane Nelson: From my perspective, I see two causes for sort of evidence-based optimism despite challenging times we face. And I think first, as Steve says, there’s very compelling evidence that things have got better and that we’ve made enormous progress, certainly in my career in the last 30 to 40 years in improving quality of people’s lives, livelihoods, their rights, their opportunities. If we look at the Sustainable Development Goals, colleagues of mine at Brookings recently did some research showing that of 24 indicators, 18 of them have improved even since 2015, which has been a more challenging period. So I think that the fact that we know it’s possible, we know what is possible and what can be achieved is cause for optimism. And then to me, I think the second cause for optimism is that we know what is needed to move forward and make progress. What are the policies that need to be changed? What are the new business models and market incentives? We know many of the technologies, whether it’s food systems or health systems or energy systems that can make a difference; it’s a question then of building the political will and public narrative to get there.
Tal Ben-Shahar: Now, what both Jane and Steve are talking about is “evidence-based optimism” or “grounded optimism,” and it is important. Why? Because what we see around us is a great deal of “detached optimism,” which leads to what has become known as toxic positivity. So once we detach optimism from reality, we have a problem. Because we know that if we’re just told to, “Oh, smile, everything will be just great; if you think positive, things will be positive.” And many of those self-help mantras, we know that they’re actually harmful, that they hurt us more than they help us. And therefore, we need essentially the synthesis that leads to realism. F. Scott Fitzgerald once wrote that the test of a first-rate intelligence is the ability to hold two opposing ideas in mind at the same time and still retain the ability to function. And these two seemingly opposing ideas are optimism and pessimism: to believe that things are going well and will continue to go well and at the same time to also keep our eyes wide open and identify and see and recognize the things that are not going well and that need to be improved.
Laine Perfas: I think that gets at something that I’ve struggled with. I often joke with my friends that I’m not really an optimist, I’m a depressive realist and that it is hard to embrace the “be happy all the time” attitude that I think is very pervasive in our culture, but the reality is that things are objectively, statistically speaking better now than they have been maybe ever, and yet it doesn’t feel that way. It feels like we’re living in a dumpster fire all the time. What do we do with that disconnect?
Pinker: We have to be aware of why it often feels like we’re in a dumpster fire, where it feels like things are getting worse. And there are both psychological biases, such as the fact that we are more attuned to negative events than positive ones, particularly recent negative events. We often remember things that went wrong in the past, but we don’t remember how bad they were at the time. As in the quotation from Franklin Pierce Adams, the best explanation for the good old days is a bad memory. It has a lot of psychological truth to it. But, and while also realizing that a rich diet of media stories is, in some ways, not the best way to have an accurate appreciation of the world, because there are some built-in distorters. News is about things that happen, not things that don’t happen, and it’s about things that happen suddenly and that are unexpected, and so there will be a natural pessimistic bias built into the news, even if none of the editors or journalists themselves are pessimistic. Simply because if you’re reporting something that happened yesterday, it’s more likely to be bad than good. Because bad things can happen quickly. A building can collapse, a war can be declared, a terrorist can attack, a school shooter can attack. But good things often consist either of things that don’t happen, like there are no wars going on in the Western Hemisphere or in Southeast Asia: historically unusual. Or things that build up a few percentage points a year and compound, such as the decline in extreme poverty that Jane alluded to. Max Roser, an economist who set up the invaluable website Our World in Data, once said that the papers could have had the headline, “137,000 people escaped from extreme poverty yesterday, every day, for the last 30 years.” But they never ran the headline, and so a billion people escaped from extreme poverty and no one knows about it.
Nelson: I very much agree with that. There’s that drumbeat of negative news and a sort of an element of unease that comes with that. There’s also the challenge, in many cases, of unrealistic expectations because of social media, celebrity lifestyles, that sort of sense that other people’s lives might be better or progress is being made and one’s own isn’t. And if you combine that with concern about change and the speed of change that is happening, I think, in a lot of communities around the world, it sort of layers on to each other in terms of a sense of unease. And then if one has leaders and in any sphere who are exerting a sort of negative narrative that compounds it further.
Pinker: Yes, and I’m an avid consumer of the positive news sites, but although there is a danger there, if positive news is perceived as human-interest fluff: a puppy defends orangutan, a cop buys groceries for a single mother, then people read it and say, “Oh, geez, is that the best you can do? Is that the best that’s happening on Earth? Now I’m really depressed.” But there are some sites that actually concentrate on truly consequential positive developments.
Ben-Shahar: And I think the first thing is that we need to be aware of the fact that the media does not provide us with a looking glass. Rather, it provides us with a magnifying glass and what it magnifies is the negative. And that’s a problem because when we assume a negative mindset, that actually can become a self-fulfilling prophecy. For example, today we see it, you know, what we focus on are the negative elements of politics and the politicians. As a result of that, good people don’t want to enter politics.
So the question is, what do we do it about it? On the individual level, it’s what has become probably the best known, by now cliched, intervention in positive psychology, which is writing a gratitude journal. Appreciating. I love the word appreciate because it has two meanings. The first meaning, of course, is to say thank you for something. The second is to grow in value. And the two meanings of the word appreciate are intimately related because what happens is that when I appreciate, the good appreciates. Unfortunately, the opposite is also the case. When I do not appreciate the good, when I take it for granted, it depreciates. So before I go to bed, I write three things at least for which I’m grateful and I do it regularly. That can be a sort of an antidote against the negative bias, or if we do it as a family or if schools introduce it or even in organizations, if employees write, “What progress have we made today?” That can go a long way in rectifying the bias.
Laine Perfas: There was something you said, Tal, that stuck out to me when you were talking about politics and this idea that pessimism, there can actually be negative consequences. For example, politicians fighting all the time. If you are then a citizen who cares about the world, you’re a little less likely to be involved because, what’s the point? Politics are a mess anyway. Are there other negative consequences or dangers to pessimism?
Pinker: There are two big ones. One of them is fatalism. Why bother trying to make the world a better place if, despite decades of effort, things are worse than ever? And the other could be radicalism. If we’re living in a, as one commentator put it, a late capitalist hellscape, or as from the other end of the spectrum, we’re living in a disaster like very few people have ever seen before, then let’s smash the machine, drain the swamp, burn everything to the ground in the hopes that anything that rises out of the ashes will be better than what we have now. But, if you have enough, I don’t want to call it pessimism, but I’ll call it realism, that things by themselves don’t get better, that the universe has no benevolent interest in our well-being, things fall apart, disorder increases, there are more ways for things to go wrong than to go right, we’re living in a hostile ecosystem where itty bitty little parasites and pathogens are constantly evolving to attack us from the inside and they have the advantage that they can evolve faster than we can … if you start off with what I think of as realistic expectations, namely, we’re in a hostile universe, we’re flawed humans. If we achieve any progress at all, that is something to be grateful for and that we should calibrate our expectations. That, especially if, as we have been emphasizing, there actually has been progress then, let’s not dismantle the system. Let’s constantly improve it, because nothing is optimal, and even if it were, the world changes, so we constantly need to reform things. But let’s build on the successes that we’ve had, and not be so fatalistic and cynical that we give up, or hope that things just naturally get better, which they do not.
Nelson: Both toxic optimism and to a large degree pessimism prevents us from asking the difficult questions that we need to ask of ourselves and our colleagues and families. I think it prevents us from making the changes that often need to be made. And it also often prevents us from taking the precautions that need to be made in terms of navigating challenging environments. So I feel where evidence-based optimism can play a critical role is in being solutions-oriented and having the confidence to try things even if we’re not sure that they’re going to work out and to be looking the whole time whether it’s at a micro community level or a new policy level or even a global governance level, what are new solutions we can try and building a sense of shared purpose and common goals around those potential solutions?
Ben-Shahar: A concept that for me has been very helpful in understanding optimism has been hope. Rick Snyder, who is one of the founders of the field of positive psychology, identifies two separate elements that make up hope. The first element is willpower. So hope is about saying, yes I can, it’s possible, I’m going to do it, or things are going to turn out well, which is more or less what we associate with an optimistic mindset. But there is a second element to hope, according to Rick Snyder, and that is way power. Way power is how I’m going to do it. I was watching an interview with Serena Williams. This was years ago and it was one of her great comebacks. And the interviewer asked her, “How’d you do it? So often you come from the brink of defeat, and you win.” And she said, “Every time I go on court, I have a Plan A and I try it, and if that doesn’t work, I always have a Plan B. And if that doesn’t work, I have a C, a D, and an E.” That’s way power. So it’s not just, yes, I can win this game. There are also alternative pathways that will help me succeed.
Nelson: And I think that the power then of what one could call collective willpower and collective way power is remarkable. I was in Tanzania over the summer visiting some of the hospitals there and 10 years ago the central hospital in Tanzania didn’t have an emergency department. And a small group of four or five doctors and a couple of nurses got together, got some support from a U.S. based company, the Ministry of Health, some American medical schools, and they built an emergency care residency program. They built the department. They’ve now built an emergency care professional association to cover the entire country, and they’re building out hospitals now all over the country. And it was a group of four or five people who started it. And over the period of less than 10 years, it’s now a nationwide program. And I think we see examples of that again and again. And I think to Tal’s point, some things didn’t go right and they reoriented and tried different pathways, but that sense of purpose and willpower, and then collectively developing those sort of shared pathways and vision, I think, can be very powerful.
Laine Perfas: Jane, a lot of the work that you’ve done over the last few decades has been basically based on the idea of cooperation. I’m thinking about another aspect of humanity, which is competition, and I’m wondering if there are times where it can lead to this sense of one-upmanship and everyone just looking out for themselves. Do you see a tension between those things, between cooperation and competition?
Nelson: I mean, certainly in my case, there are tensions. But I think even in the most competitive industry sectors, I’ve seen industry competitors coming together around issues like safety, human rights, living wage, decent work. And then, equally, you’ll see other companies and other industries where competition is the absolute driving force, and then they’re not willing to cooperate even on a sort of precompetitive basis to make the broader human rights environment, operating environment, and environmental issues better for everyone. So I think a lot of it comes down to the leadership. I think if you’ve got a set of leaders who recognize that there’s always going to be competition, but that there are certain fundamental values and goals for human well-being and safety and welfare that are more important than the competition.
Pinker: An understanding of where competition is inherently zero-sum and it’s actually positive sum and there’s overlaps of interest. So in professional sports, for example, it’s set up to be zero-sum in terms of winning a championship. If one team wins the World Series, that means another team doesn’t. On the other hand, there are also common interests in keeping the sport entertaining for everyone, and so all of the team owners can get together and decide baseball games are taking too long and they’re too boring, and we’re all losing as people are sick of watching players adjust their gloves before a pitch is thrown, so how can we change the game in a way that benefits all of us, even as we compete against each other?
Jane mentioned the sustainable development goals, which is easy to neglect, but it’s an astonishing achievement that I think it’s, was it 191 of 193 U.N. members voted for it? In an era in which there seems to be rampant nationalism and polarization and mistrust, everyone agrees it’s better if fewer babies die. It’s better if fewer mothers die. It’s better if more people have access to electricity. And against the cynicism that the world is falling apart, it is astonishing that the Sustainable Development Goals really were things that all of humanity agreed on. And that’s essential to not mistakenly see every competition as zero-sum.
Ben-Shahar: What’s very important here also is how we frame our goals. There’s fascinating research by the late psychologist Lee Ross and his colleagues on framing. So they basically divided a large group into two subgroups. One group, they told them, “You’re going to be playing a game now. It’s called The Wall Street Game.” And they interacted. And then they took the second subgroup and they said to them, “You’re going to play a game now. It’s called The Community Game.” Now, even though they played the exact same game, there was much more competition among the participants in the first group, The Wall Street Game versus the second group that were much more likely to cooperate, to help each other, to work together. So merely framing our goals, our objectives, our projects in a different way can sometimes make all the difference between cut-throat competition and benevolent cooperation.
Laine Perfas: Even though things globally are a lot better now than they’ve been, there’s still a lot of suffering in the world. It made me wonder if optimism is a privilege, if it’s a privilege to be able to feel optimistic even to the point where maybe you take progress for granted?
Pinker: I think it’s the other way around. In fact, if you look at measures of optimism across countries, it’s the rich countries that are pessimistic. That’s the luxury. In fact, I think the most pessimistic country in the world is France. That’s a pretty nice place to live. And the most optimistic, for a while it was, I think it was China. And I think Kenya was pretty optimistic. Partly it’s the slope. It’s the trajectory. The improvement that people see in their lives. But, and this goes back to Tal’s point on the salubrious effects of gratitude and appreciation. I hate to say, this is a national stereotype and a cliche to say that the French are spoiled. But by human standards, they have it pretty good. But in many ways it’s pessimism that’s the luxury, at least if it comes in the form of blowing off the good fortune that your ancestors worked very hard to attain. Because again, good things don’t happen by themselves. It’s easy to pocket the gains and forget that they’re not the natural state of affairs, but they themselves are the hard-won achievements of our predecessors.
Nelson: And I think Tal’s framing of toxic optimism, I think if you have toxic optimism amongst elites, there is a danger of lack of empathy and compassion. And, the infamous, the poor can just pull themselves up by their bootstraps, and total lack of understanding that they don’t have bootstraps and probably not boots. And that so many communities do need support and help.
Ben-Shahar: The key to my mind here, the emphasis needs to be on effort. So when you have a country emerging from poverty, there’s a great deal of effort that millions and sometimes billions of people have to invest. And why is effort so important? Steve, we were talking earlier about, how you can have a national character that is spoiled. Why? Because in some ways, not in all ways, but in some ways, things have been too easy. Now, if we go to the gym and all the weights are on zero, and we lift those, we’re not going to get stronger. In fact, our muscles over time are going to atrophy. In other words, we need resistance in order to grow stronger. We need hardships and difficulties in our lives to a point.
Laine Perfas: How do we break out of this pessimistic cycle that we have found ourselves in?
Pinker: I would like to see the news media have a bit more of a historical perspective. And by that I don’t mean going back to the writings of de Tocqueville in the 19th century or ostentatiously erudite allusions to the Romans but just in presenting an event, you put it in statistical context, put it in the context of the last five years, 25 years, 50 years. I would like to see the news section of the paper take some lessons out of the business section and the sports sections, where they present everything in statistical context. The sports page is not optimistic in the sense of only reporting when your team wins or pessimistic in only reporting when it loses. Either way, it gets reported and you read the standings every day. Likewise, the stock prices and commodity prices and so on. I think there should be realism in terms of opinion journalism and the opinion industry in general of what we can reasonably expect. That is, can a politician really solve the problems of unemployment and inflation and energy and national well-being? It’s a recent idea that that is part of the job description of a president, to control the economy and the national mood. But just to remember, our politicians themselves are humans, with all their flaws, with many constraints, and not to lead to a situation where trust in all institutions is plummeting, in part because our expectations are that they have near magical powers, which they can never live up to, leading to this cycle of cynicism and fatalism.
Ben-Shahar: Steve, I love the fact that you essentially recommended reading the sports section of the newspaper, which I must admit is my favorite. And then on top of that, what I would add is, the approach of the field of positive psychology and what’s unique about it is that it changes the questions that we ask. Traditional psychologists or psychotherapists would begin perhaps the session by asking, “What’s not working in your life?” Or, “What’s wrong?” Or a couple’s counselor would ask, “What’s not working in your relationship? What do you want to fix?” Positive psychology takes these questions and changes them. And a therapist, positive psychologist, would first ask, “What’s going well in your life? What’s working? We’ll of course get to the problem. We’re not ignoring them. But let’s begin with what is going well.” Or a couple’s counselor would ask, “What’s working in your relationship? You wouldn’t be here if nothing was working.” And what the evidence shows is that when we start with these questions, we energize the individual, the relationship, the team, we’re in a much better place from which we can deal then with the difficulties, hardships, and failures.
Nelson: My former boss, the late Kofi Annan, the Secretary General of the U.N., used to talk about coalitions for change. And I think coalitions, whether they be within a community or they’re within an industry sector or at a national level, if one can build coalitions with initially a small group of people who have that sense of purpose, I think that’s another way to overcome cycles of pessimism and to build larger groups around a common agenda.
Laine Perfas: For my last question, I wanted to get a little bit personal, not too personal, but as you all navigate the world, I’m sure you’ve got your rough days. I’m sure you’ve got your days where you’re like, this is a mess. How do you stay hopeful?
Pinker: I try to compartmentalize. Ignoring worries won’t make the problems go away. They have to be dealt with, but not to let them invade your consciousness 24/7, as much as possible, to decide when you’re going to be in problem-solving mode. I try not to deny myself simple pleasures. There’s some things in life that are just guaranteed to make you happy: good food and good company, and you deserve those too. Put things in perspective: What’s the worst that can happen if I don’t solve this problem or if this fear comes to pass, will I fall apart? Prioritize what’s important in life: human relationships, being a person that I can respect, accomplishing my longer-term goals, and try not to get sidetracked by distractions that ultimately won’t count for much. A set of tricks like that, but not least, not depriving yourself of sources of guaranteed pleasure because the world has no shortage of stressors and toxic stimuli.
Nelson: To me, it’s family and friends and trying to be very intentional every day. And I travel a lot and being very conscious of checking in with people I love and who I know love me. I, like Tal, journal and have a gratitude journal. And I think, doing that very consciously every day, one realizes just how blessed we are and how much joy we often have in our lives, even when things are challenging and difficult. I meditate and I love getting out in nature. And then I think just the constant reminders of encounters with people who have demonstrated amazing resilience or courage in overcoming challenges. And in my work, I am incredibly blessed and privileged to meet a lot of people like that. And just a reminder of just how many amazing, remarkable, inspiring people are there in the world. And those numbers definitely outweigh the people who are bad and, being constantly aware of that is what keeps me very positive and hopeful for the future.
Ben-Shahar: So I’ve been keeping a gratitude journal since the 19th of September, 1999. Not because I read the research then. The research didn’t come out until 2003. But because Oprah told me to do so, actually on one of her shows she mentioned the gratitude journal. And I thought, wow, what a lovely idea. And I tried it and again, I didn’t need the research that came much later to convince me how helpful it is, but there is another thing that I do. And I credit one of my other teachers with that, and that is the late Daniel Wagner. His research on ironic processing points to a very important point within the field of positive psychology, and that is that the first step to happiness is allowing in unhappiness. The paradox is that when we experience sadness or anxiety, and our response to that is, “I shouldn’t be sad or I don’t want to be, or I shouldn’t be anxious,” the sadness and anxiety only intensify. The paradox is that when we accept and embrace them, when we give ourselves the permission to be human, that is when they do not overstay their welcome. Simply observe. Simply accept. Simply be with the emotion. The first step to happiness is allowing in unhappiness.
Laine Perfas: Thank you all for joining me for this really great conversation.
Nelson: Thank you.
Pinker: Thanks, Jane, Tal, and Sam.
Laine Perfas: Thanks for listening. For a transcript of this episode and to see all of our other episodes, visit harvard.edu/thinking. This episode was hosted and produced by me, Samantha Laine Perfas. It was edited by Ryan Mulcahy, Simona Covel, and Paul Makishima, with additional editing and production support from Sarah Lamodi. Original music and sound designed by Noel Flatt. Produced by Harvard University, copyright 2024.
We ingest equivalent of credit card per week — how worried should we be? In ‘Harvard Thinking,’ experts discuss how to minimize exposure, possible solutions.
By analyzing brain scans taken as people watched movie clips, MIT researchers have created the most comprehensive map yet of the functions of the brain’s cerebral cortex.Using functional magnetic resonance imaging (fMRI) data, the research team identified 24 networks with different functions, which include processing language, social interactions, visual features, and other types of sensory input.Many of these networks have been seen before but haven’t been precisely characterized using naturali
By analyzing brain scans taken as people watched movie clips, MIT researchers have created the most comprehensive map yet of the functions of the brain’s cerebral cortex.
Using functional magnetic resonance imaging (fMRI) data, the research team identified 24 networks with different functions, which include processing language, social interactions, visual features, and other types of sensory input.
Many of these networks have been seen before but haven’t been precisely characterized using naturalistic conditions. While the new study mapped networks in subjects watching engaging movies, previous works have used a small number of specific tasks or examined correlations across the brain in subjects who were simply resting.
“There’s an emerging approach in neuroscience to look at brain networks under more naturalistic conditions. This is a new approach that reveals something different from conventional approaches in neuroimaging,” says Robert Desimone, director of MIT’s McGovern Institute for Brain Research. “It’s not going to give us all the answers, but it generates a lot of interesting ideas based on what we see going on in the movies that's related to these network maps that emerge.”
The researchers hope that their new map will serve as a starting point for further study of what each of these networks is doing in the brain.
Desimone and John Duncan, a program leader in the MRC Cognition and Brain Sciences Unit at Cambridge University, are the senior authors of the study, which appears today in Neuron. Reza Rajimehr, a research scientist in the McGovern Institute and a former graduate student at Cambridge University, is the lead author of the paper.
Precise mapping
The cerebral cortex of the brain contains regions devoted to processing different types of sensory information, including visual and auditory input. Over the past few decades, scientists have identified many networks that are involved in this kind of processing, often using fMRI to measure brain activity as subjects perform a single task such as looking at faces.
In other studies, researchers have scanned people’s brains as they do nothing, or let their minds wander. From those studies, researchers have identified networks such as the default mode network, a network of areas that is active during internally focused activities such as daydreaming.
“Up to now, most studies of networks were based on doing functional MRI in the resting-state condition. Based on those studies, we know some main networks in the cortex. Each of them is responsible for a specific cognitive function, and they have been highly influential in the neuroimaging field,” Rajimehr says.
However, during the resting state, many parts of the cortex may not be active at all. To gain a more comprehensive picture of what all these regions are doing, the MIT team analyzed data recorded while subjects performed a more natural task: watching a movie.
“By using a rich stimulus like a movie, we can drive many regions of the cortex very efficiently. For example, sensory regions will be active to process different features of the movie, and high-level areas will be active to extract semantic information and contextual information,” Rajimehr says. “By activating the brain in this way, now we can distinguish different areas or different networks based on their activation patterns.”
The data for this study was generated as part of the Human Connectome Project. Using a 7-Tesla MRI scanner, which offers higher resolution than a typical MRI scanner, brain activity was imaged in 176 people as they watched one hour of movie clips showing a variety of scenes.
The MIT team used a machine-learning algorithm to analyze the activity patterns of each brain region, allowing them to identify 24 networks with different activity patterns and functions.
Some of these networks are located in sensory areas such as the visual cortex or auditory cortex, as expected for regions with specific sensory functions. Other areas respond to features such as actions, language, or social interactions. Many of these networks have been seen before, but this technique offers more precise definition of where the networks are located, the researchers say.
“Different regions are competing with each other for processing specific features, so when you map each function in isolation, you may get a slightly larger network because it is not getting constrained by other processes,” Rajimehr says. “But here, because all the areas are considered together, we are able to define more precise boundaries between different networks.”
The researchers also identified networks that hadn’t been seen before, including one in the prefrontal cortex, which appears to be highly responsive to visual scenes. This network was most active in response to pictures of scenes within the movie frames.
Executive control networks
Three of the networks found in this study are involved in “executive control,” and were most active during transitions between different clips. The researchers also observed that these control networks appear to have a “push-pull” relationship with networks that process specific features such as faces or actions. When networks specific to a particular feature were very active, the executive control networks were mostly quiet, and vice versa.
“Whenever the activations in domain-specific areas are high, it looks like there is no need for the engagement of these high-level networks,” Rajimehr says. “But in situations where perhaps there is some ambiguity and complexity in the stimulus, and there is a need for the involvement of the executive control networks, then we see that these networks become highly active.”
Using a movie-watching paradigm, the researchers are now studying some of the networks they identified in more detail, to identify subregions involved in particular tasks. For example, within the social processing network, they have found regions that are specific to processing social information about faces and bodies. In a new network that analyzes visual scenes, they have identified regions involved in processing memory of places.
“This kind of experiment is really about generating hypotheses for how the cerebral cortex is functionally organized. Networks that emerge during movie watching now need to be followed up with more specific experiments to test the hypotheses. It’s giving us a new view into the operation of the entire cortex during a more naturalistic task than just sitting at rest,” Desimone says.
The research was funded by the McGovern Institute, the Cognitive Science and Technology Council of Iran, the MRC Cognition and Brain Sciences Unit at the University of Cambridge, and a Cambridge Trust scholarship.
The Martin A. Dale '53 Fellowship provides grants for Princeton seniors to spend the year after graduation on "an independent project of extraordinary merit." Juliette Carbonnier and Collin Riggins are the latest recipients.
The Martin A. Dale '53 Fellowship provides grants for Princeton seniors to spend the year after graduation on "an independent project of extraordinary merit." Juliette Carbonnier and Collin Riggins are the latest recipients.
Tiny grains from a distant asteroid are revealing clues to the magnetic forces that shaped the far reaches of the solar system over 4.6 billion years ago.Scientists at MIT and elsewhere have analyzed particles of the asteroid Ryugu, which were collected by the Japanese Aerospace Exploration Agency’s (JAXA) Hayabusa2 mission and brought back to Earth in 2020. Scientists believe Ryugu formed on the outskirts of the early solar system before migrating in toward the asteroid belt, eventually settlin
Tiny grains from a distant asteroid are revealing clues to the magnetic forces that shaped the far reaches of the solar system over 4.6 billion years ago.
Scientists at MIT and elsewhere have analyzed particles of the asteroid Ryugu, which were collected by the Japanese Aerospace Exploration Agency’s (JAXA) Hayabusa2 mission and brought back to Earth in 2020. Scientists believe Ryugu formed on the outskirts of the early solar system before migrating in toward the asteroid belt, eventually settling into an orbit between Earth and Mars.
The team analyzed Ryugu’s particles for signs of any ancient magnetic field that might have been present when the asteroid first took shape. Their results suggest that if there was a magnetic field, it would have been very weak. At most, such a field would have been about 15 microtesla. (The Earth’s own magnetic field today is around 50 microtesla.)
Even so, the scientists estimate that such a low-grade field intensity would have been enough to pull together primordial gas and dust to form the outer solar system’s asteroids and potentially play a role in giant planet formation, from Jupiter to Neptune.
The team’s results, which are published today in the journal AGU Advances, show for the first time that the distal solar system likely harbored a weak magnetic field. Scientists have known that a magnetic field shaped the inner solar system, where Earth and the terrestrial planets were formed. But it was unclear whether such a magnetic influence extended into more remote regions, until now.
“We’re showing that, everywhere we look now, there was some sort of magnetic field that was responsible for bringing mass to where the sun and planets were forming,” says study author Benjamin Weiss, the Robert R. Shrock Professor of Earth and Planetary Sciences at MIT. “That now applies to the outer solar system planets.”
The study’s lead author is Elias Mansbach PhD ’24, who is now a postdoc at Cambridge University. MIT co-authors include Eduardo Lima, Saverio Cambioni, and Jodie Ream, along with Michael Sowell and Joseph Kirschvink of Caltech, Roger Fu of Harvard University, Xue-Ning Bai of Tsinghua University, Chisato Anai and Atsuko Kobayashi of the Kochi Advanced Marine Core Research Institute, and Hironori Hidaka of Tokyo Institute of Technology.
A far-off field
Around 4.6 billion years ago, the solar system formed from a dense cloud of interstellar gas and dust, which collapsed into a swirling disk of matter. Most of this material gravitated toward the center of the disk to form the sun. The remaining bits formed a solar nebula of swirling, ionized gas. Scientists suspect that interactions between the newly formed sun and the ionized disk generated a magnetic field that threaded through the nebula, helping to drive accretion and pull matter inward to form the planets, asteroids, and moons.
“This nebular field disappeared around 3 to 4 million years after the solar system’s formation, and we are fascinated with how it played a role in early planetary formation,” Mansbach says.
Scientists previously determined that a magnetic field was present throughout the inner solar system — a region that spanned from the sun to about 7 astronomical units (AU), out to where Jupiter is today. (One AU is the distance between the sun and the Earth.) The intensity of this inner nebular field was somewhere between 50 to 200 microtesla, and it likely influenced the formation of the inner terrestrial planets. Such estimates of the early magnetic field are based on meteorites that landed on Earth and are thought to have originated in the inner nebula.
“But how far this magnetic field extended, and what role it played in more distal regions, is still uncertain because there haven’t been many samples that could tell us about the outer solar system,” Mansbach says.
Rewinding the tape
The team got an opportunity to analyze samples from the outer solar system with Ryugu, an asteroid that is thought to have formed in the early outer solar system, beyond 7 AU, and was eventually brought into orbit near the Earth. In December 2020, JAXA’s Hayabusa2 mission returned samples of the asteroid to Earth, giving scientists a first look at a potential relic of the early distal solar system.
The researchers acquired several grains of the returned samples, each about a millimeter in size. They placed the particles in a magnetometer — an instrument in Weiss’ lab that measures the strength and direction of a sample’s magnetization. They then applied an alternating magnetic field to progressively demagnetize each sample.
“Like a tape recorder, we are slowly rewinding the sample’s magnetic record,” Mansbach explains. “We then look for consistent trends that tell us if it formed in a magnetic field.”
They determined that the samples held no clear sign of a preserved magnetic field. This suggests that either there was no nebular field present in the outer solar system where the asteroid first formed, or the field was so weak that it was not recorded in the asteroid’s grains. If the latter is the case, the team estimates such a weak field would have been no more than 15 microtesla in intensity.
The researchers also reexamined data from previously studied meteorites. They specifically looked at “ungrouped carbonaceous chondrites” — meteorites that have properties that are characteristic of having formed in the distal solar system. Scientists had estimated the samples were not old enough to have formed before the solar nebula disappeared. Any magnetic field record the samples contain, then, would not reflect the nebular field. But Mansbach and his colleagues decided to take a closer look.
“We reanalyzed the ages of these samples and found they are closer to the start of the solar system than previously thought,” Mansbach says. “We think these samples formed in this distal, outer region. And one of these samples does actually have a positive field detection of about 5 microtesla, which is consistent with an upper limit of 15 microtesla.”
This updated sample, combined with the new Ryugu particles, suggest that the outer solar system, beyond 7 AU, hosted a very weak magnetic field, that was nevertheless strong enough to pull matter in from the outskirts to eventually form the outer planetary bodies, from Jupiter to Neptune.
“When you’re further from the sun, a weak magnetic field goes a long way,” Weiss notes. “It was predicted that it doesn’t need to be that strong out there, and that’s what we’re seeing.”
The team plans to look for more evidence of distal nebular fields with samples from another far-off asteroid, Bennu, which were delivered to Earth in September 2023 by NASA’s OSIRIS-REx spacecraft.
“Bennu looks a lot like Ryugu, and we’re eagerly awaiting first results from those samples,” Mansbach says.
When Nikola Tesla predicted we’d have handheld phones that could display videos, photographs, and more, his musings seemed like a distant dream. Nearly 100 years later, smartphones are like an extra appendage for many of us.Digital fabrication engineers are now working toward expanding the display capabilities of other everyday objects. One avenue they’re exploring is reprogrammable surfaces — or items whose appearances we can digitally alter — to help users present important information, such a
When Nikola Tesla predicted we’d have handheld phones that could display videos, photographs, and more, his musings seemed like a distant dream. Nearly 100 years later, smartphones are like an extra appendage for many of us.
Digital fabrication engineers are now working toward expanding the display capabilities of other everyday objects. One avenue they’re exploring is reprogrammable surfaces — or items whose appearances we can digitally alter — to help users present important information, such as health statistics, as well as new designs on things like a wall, mug, or shoe.
Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the University of California at Berkeley, and Aarhus University have taken an intriguing step forward by fabricating “PortaChrome,” a portable light system and design tool that can change the color and textures of various objects. Equipped with ultraviolet (UV) and red, green, and blue (RGB) LEDs, the device can be attached to everyday objects like shirts and headphones. Once a user creates a design and sends it to a PortaChrome machine via Bluetooth, the surface can be programmed into multicolor displays of health data, entertainment, and fashion designs.
To make an item reprogrammable, the object must be coated with photochromic dye, an invisible ink that can be turned into different colors with light patterns. Once it’s coated, individuals can create and relay patterns to the item via the team’s graphic design software, or use the team’s API to interact with the device directly and embed data-driven designs. When attached to a surface, PortaChrome’s UV lights saturate the dye while the RGB LEDs desaturate it, activating the colors and ensuring each pixel is toned to match the intended design.
Zhu and her colleagues’ integrated light system changes objects’ colors in less than four minutes on average, which is eight times faster than their prior work, “Photo-Chromeleon.” This speed boost comes from switching to a light source that makes contact with the object to transmit UV and RGB rays. Photo-Chromeleon used a projector to help activate the color-changing properties of photochromic dye, where the light on the object's surface is at a reduced intensity.
“PortaChrome provides a more convenient way to reprogram your surroundings,” says Yunyi Zhu ’20, MEng ’21, an MIT PhD student in electrical engineering and computer science, affiliate of CSAIL, and lead author on a paper about the work. “Compared with our projector-based system from before, PortaChrome is a more portable light source that can be placed directly on top of the photochromic surface. This allows the color change to happen without user intervention and helps us avoid contaminating our environment with UV. As a result, users can wear their heart rate chart on their shirt after a workout, for instance.”
Giving everyday objects a makeover
In demos, PortaChrome displayed health data on different surfaces. A user hiked with PortaChrome sewed onto their backpack, putting it into direct contact with the back of their shirt, which was coated in photochromic dye. Altitude and heart rate sensors sent data to the lighting device, which was then converted into a chart through a reprogramming script developed by the researchers. This process created a health visualization on the back of the user’s shirt. In a similar showing, MIT researchers displayed a heart gradually coming together on the back of a tablet to show how a user was progressing toward a fitness goal.
PortaChrome also showed a flair for customizing wearables. For example, the researchers redesigned some white headphones with sideways blue lines and horizontal yellow and purple stripes. The photochromic dye was coated on the headphones and the team then attached the PortaChrome device to the inside of the headphone case. Finally, the researchers successfully reprogrammed their patterns onto the object, which resembled watercolor art. Researchers also recolored a wrist splint to match different clothes using this process.
Eventually, the work could be used to digitize consumers’ belongings. Imagine putting on a cloak that can change your entire shirt design, or using your car cover to give your vehicle a new look.
PortaChrome’s main ingredients
On the hardware end, PortaChrome is a combination of four main ingredients. Their portable device consists of a textile base as a sort of backbone, a textile layer with the UV lights soldered on and another with the RGB stuck on, and a silicone diffusion layer to top it off. Resembling a translucent honeycomb, the silicone layer covers the interlaced UV and RGB LEDs and directs them toward individual pixels to properly illuminate a design over a surface.
This device can be flexibly wrapped around objects with different shapes. For tables and other flat surfaces, you could place PortaChrome on top, like a placemat. For a curved item like a thermos, you could wrap the light source around like a coffee cup sleeve to ensure it reprograms the entire surface.
The portable, flexible light system is crafted with maker space-available tools (like laser cutters, for example), and the same method can be replicated with flexible PCB materials and other mass manufacturing systems.
While it can also quickly convert our surroundings into dynamic displays, Zhu and her colleagues believe it could benefit from further speed boosts. They'd like to use smaller LEDs, with the likely result being a surface that could be reprogrammed in seconds with a higher-resolution design, thanks to increased light intensity.
“The surfaces of our everyday things are encoded with colors and visual textures, delivering crucial information and shaping how we interact with them,” says Georgia Tech postdoc Tingyu Cheng, who was not involved with the research. “PortaChrome is taking a leap forward by providing reprogrammable surfaces with the integration of flexible light sources (UV and RGB LEDs) and photochromic pigments into everyday objects, pixelating the environment with dynamic color and patterns. The capabilities demonstrated by PortaChrome could revolutionize the way we interact with our surroundings, particularly in domains like personalized fashion and adaptive user interfaces. This technology enables real-time customization that seamlessly integrates into daily life, offering a glimpse into the future of ‘ubiquitous displays.’”
Zhu is joined by nine CSAIL affiliates on the paper: MIT PhD student and MIT Media Lab affiliate Cedric Honnet; former visiting undergraduate researchers Yixiao Kang, Angelina J. Zheng, and Grace Tang; MIT undergraduate student Luca Musk; University of Michigan Assistant Professor Junyi Zhu SM ’19, PhD ’24; recent postdoc and Aarhus University assistant professor Michael Wessely; and senior author Stefanie Mueller, the TIBCO Career Development Associate Professor in the MIT departments of Electrical Engineering and Computer Science and Mechanical Engineering and leader of the HCI Engineering Group at CSAIL.
This work was supported by the MIT-GIST Joint Research Program and was presented at the ACM Symposium on User Interface Software and Technology in October.
As part of a two-day state visit, President of the Czech Republic Petr Pavel and President of the Swiss Confederation Viola Amherd visited ETH Zurich. The two leaders attended the Swiss-Czech Biotechnology and Pharmaceutical Forum.
As part of a two-day state visit, President of the Czech Republic Petr Pavel and President of the Swiss Confederation Viola Amherd visited ETH Zurich. The two leaders attended the Swiss-Czech Biotechnology and Pharmaceutical Forum.
When Nikola Tesla predicted we’d have handheld phones that could display videos, photographs, and more, his musings seemed like a distant dream. Nearly 100 years later, smartphones are like an extra appendage for many of us.Digital fabrication engineers are now working toward expanding the display capabilities of other everyday objects. One avenue they’re exploring is reprogrammable surfaces — or items whose appearances we can digitally alter — to help users present important information, such a
When Nikola Tesla predicted we’d have handheld phones that could display videos, photographs, and more, his musings seemed like a distant dream. Nearly 100 years later, smartphones are like an extra appendage for many of us.
Digital fabrication engineers are now working toward expanding the display capabilities of other everyday objects. One avenue they’re exploring is reprogrammable surfaces — or items whose appearances we can digitally alter — to help users present important information, such as health statistics, as well as new designs on things like a wall, mug, or shoe.
Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), the University of California at Berkeley, and Aarhus University have taken an intriguing step forward by fabricating “PortaChrome,” a portable light system and design tool that can change the color and textures of various objects. Equipped with ultraviolet (UV) and red, green, and blue (RGB) LEDs, the device can be attached to everyday objects like shirts and headphones. Once a user creates a design and sends it to a PortaChrome machine via Bluetooth, the surface can be programmed into multicolor displays of health data, entertainment, and fashion designs.
To make an item reprogrammable, the object must be coated with photochromic dye, an invisible ink that can be turned into different colors with light patterns. Once it’s coated, individuals can create and relay patterns to the item via the team’s graphic design software, or use the team’s API to interact with the device directly and embed data-driven designs. When attached to a surface, PortaChrome’s UV lights saturate the dye while the RGB LEDs desaturate it, activating the colors and ensuring each pixel is toned to match the intended design.
Zhu and her colleagues’ integrated light system changes objects’ colors in less than four minutes on average, which is eight times faster than their prior work, “Photo-Chromeleon.” This speed boost comes from switching to a light source that makes contact with the object to transmit UV and RGB rays. Photo-Chromeleon used a projector to help activate the color-changing properties of photochromic dye, where the light on the object's surface is at a reduced intensity.
“PortaChrome provides a more convenient way to reprogram your surroundings,” says Yunyi Zhu ’20, MEng ’21, an MIT PhD student in electrical engineering and computer science, affiliate of CSAIL, and lead author on a paper about the work. “Compared with our projector-based system from before, PortaChrome is a more portable light source that can be placed directly on top of the photochromic surface. This allows the color change to happen without user intervention and helps us avoid contaminating our environment with UV. As a result, users can wear their heart rate chart on their shirt after a workout, for instance.”
Giving everyday objects a makeover
In demos, PortaChrome displayed health data on different surfaces. A user hiked with PortaChrome sewed onto their backpack, putting it into direct contact with the back of their shirt, which was coated in photochromic dye. Altitude and heart rate sensors sent data to the lighting device, which was then converted into a chart through a reprogramming script developed by the researchers. This process created a health visualization on the back of the user’s shirt. In a similar showing, MIT researchers displayed a heart gradually coming together on the back of a tablet to show how a user was progressing toward a fitness goal.
PortaChrome also showed a flair for customizing wearables. For example, the researchers redesigned some white headphones with sideways blue lines and horizontal yellow and purple stripes. The photochromic dye was coated on the headphones and the team then attached the PortaChrome device to the inside of the headphone case. Finally, the researchers successfully reprogrammed their patterns onto the object, which resembled watercolor art. Researchers also recolored a wrist splint to match different clothes using this process.
Eventually, the work could be used to digitize consumers’ belongings. Imagine putting on a cloak that can change your entire shirt design, or using your car cover to give your vehicle a new look.
PortaChrome’s main ingredients
On the hardware end, PortaChrome is a combination of four main ingredients. Their portable device consists of a textile base as a sort of backbone, a textile layer with the UV lights soldered on and another with the RGB stuck on, and a silicone diffusion layer to top it off. Resembling a translucent honeycomb, the silicone layer covers the interlaced UV and RGB LEDs and directs them toward individual pixels to properly illuminate a design over a surface.
This device can be flexibly wrapped around objects with different shapes. For tables and other flat surfaces, you could place PortaChrome on top, like a placemat. For a curved item like a thermos, you could wrap the light source around like a coffee cup sleeve to ensure it reprograms the entire surface.
The portable, flexible light system is crafted with maker space-available tools (like laser cutters, for example), and the same method can be replicated with flexible PCB materials and other mass manufacturing systems.
While it can also quickly convert our surroundings into dynamic displays, Zhu and her colleagues believe it could benefit from further speed boosts. They'd like to use smaller LEDs, with the likely result being a surface that could be reprogrammed in seconds with a higher-resolution design, thanks to increased light intensity.
“The surfaces of our everyday things are encoded with colors and visual textures, delivering crucial information and shaping how we interact with them,” says Georgia Tech postdoc Tingyu Cheng, who was not involved with the research. “PortaChrome is taking a leap forward by providing reprogrammable surfaces with the integration of flexible light sources (UV and RGB LEDs) and photochromic pigments into everyday objects, pixelating the environment with dynamic color and patterns. The capabilities demonstrated by PortaChrome could revolutionize the way we interact with our surroundings, particularly in domains like personalized fashion and adaptive user interfaces. This technology enables real-time customization that seamlessly integrates into daily life, offering a glimpse into the future of ‘ubiquitous displays.’”
Zhu is joined by nine CSAIL affiliates on the paper: MIT PhD student and MIT Media Lab affiliate Cedric Honnet; former visiting undergraduate researchers Yixiao Kang, Angelina J. Zheng, and Grace Tang; MIT undergraduate student Luca Musk; University of Michigan Assistant Professor Junyi Zhu SM ’19, PhD ’24; recent postdoc and Aarhus University assistant professor Michael Wessely; and senior author Stefanie Mueller, the TIBCO Career Development Associate Professor in the MIT departments of Electrical Engineering and Computer Science and Mechanical Engineering and leader of the HCI Engineering Group at CSAIL.
This work was supported by the MIT-GIST Joint Research Program and was presented at the ACM Symposium on User Interface Software and Technology in October.
Breast cancer is the second most common type of cancer and cause of cancer death for women in the United States, affecting one in eight women overall.Most women with breast cancer undergo lumpectomy surgery to remove the tumor and a rim of healthy tissue surrounding the tumor. After the procedure, the removed tissue is sent to a pathologist to look for signs of disease at the edge of the tissue assessed. Unfortunately, about 20 percent of women who have lumpectomies must undergo a second surgery
Breast cancer is the second most common type of cancer and cause of cancer death for women in the United States, affecting one in eight women overall.
Most women with breast cancer undergo lumpectomy surgery to remove the tumor and a rim of healthy tissue surrounding the tumor. After the procedure, the removed tissue is sent to a pathologist to look for signs of disease at the edge of the tissue assessed. Unfortunately, about 20 percent of women who have lumpectomies must undergo a second surgery to remove more tissue.
Now, an MIT spinout is giving surgeons a real-time view of cancerous tissue during surgery. Lumicell has developed a handheld device and an optical imaging agent that, when combined, allow surgeons to scan the tissue within the surgical cavity to visualize residual cancer cells. The surgeons see these images on a monitor that can guide them to remove additional tissue during the procedure.
In a clinical trial of 357 patients, Lumicell’s technology not only reduced the need for second surgeries but also revealed tissue suspected to contain cancer cells that may have otherwise been missed by the standard of care lumpectomy.
The company received U.S. Food and Drug Administration approval for the technology earlier this year, marking a major milestone for Lumicell and the founders, who include MIT professors Linda Griffith and Moungi Bawendi along with PhD candidate W. David Lee ’69, SM ’70. Much of the early work developing and testing the system took place at the Koch Institute for Integrative Cancer Research at MIT, beginning in 2008.
The FDA approval also held deep personal significance for some of Lumicell’s team members, including Griffith, a two-time breast cancer survivor, and Lee, whose wife’s passing from the disease in 2003 changed the course of his life.
An interdisciplinary approach
Lee ran a technology consulting group for 25 years before his wife was diagnosed with breast cancer. Watching her battle the disease inspired him to develop technologies that could help cancer patients.
His neighbor at the time was Tyler Jacks, the founding director of the Koch Institute. Jacks invited Lee to a series of meetings at the Koch involving professors Robert Langer and Bawendi, and Lee eventually joined the Koch Institute as an integrative program officer in 2008, where he began exploring an approach for improving imaging in living organisms with single-cell resolution using charge-coupled device (CCD) cameras.
“CCD pixels at the time were each 2 or 3 microns and spaced 2 or 3 microns,” Lee explains. “So the idea was very simple: to stabilize a camera on a tissue so it would move with the breathing of the animal, so the pixels would essentially line up with the cells without any fancy magnification.”
That work led Lee to begin meeting regularly with a multidisciplinary group including Lumicell co-founders Bawendi, currently the Lester Wolfe Professor of Chemistry at MIT and winner of the 2023 Nobel Prize in Chemistry; Griffith, the School of Engineering Professor of Teaching Innovation in MIT’s Department of Biological Engineering and an extramural faculty member at the Koch Institute; Ralph Weissleder, a professor at Harvard Medical School; and David Kirsch, formerly a postdoc at the Koch Institute and now a scientist at the Princess Margaret Cancer Center.
“On Friday afternoons, we’d get together, and Moungi would teach us some chemistry, Lee would teach us some engineering, and David Kirsch would teach some biology,” Griffith recalls.
Through those meetings, the researchers began to explore the effectiveness of combining Lee’s imaging approach with engineered proteins that would light up where the immune system meets the edge of tumors, for use during surgery. To begin testing the idea, the group received funding from the Koch Institute Frontier Research Program via the Kathy and Curt Marble Cancer Research Fund.
“Without that support, this never would have happened,” Lee says. “When I was learning biology at MIT as an undergrad, genetics weren’t even in the textbooks yet. But the Koch Institute provided education, funding, and most importantly, connections to faculty, who were willing to teach me biology.”
In 2010, Griffith was diagnosed with breast cancer.
“Going through that personal experience, I understood the impact that we could have,” Griffith says. “I had a very unusual situation and a bad kind of tumor. The whole thing was nerve-wracking, but one of the most nerve-wracking times was waiting to find out if my tumor margins were clear after surgery. I experienced that uncertainty and dread as a patient, so I became hugely sensitized to our mission.”
The approach Lumicell’s founders eventually settled on begins two to six hours before surgery, when patients receive the optical imaging agent through an IV.Then, during surgery, surgeons use Lumicell’s handheld imaging device to scan the walls of the breast cavity. Lumicell’s cancer detection software shows spots that highlight regions suspected to contain residual cancer on the computer monitor, which the surgeon can then remove. The process adds less than 7 minutes on average to the procedure.
“The technology we developed allows the surgeon to scan the actual cavity, whereas pathology only looks at the lump removed, and [pathologists] make their assessment based on looking at about 1 or 2 percent of the surface area,” Lee says. “Not only are we detecting cancer that was left behind to potentially eliminate second surgeries, we are also, very importantly, finding cancer in some patients that wouldn't be found in pathology and may not generate a second surgery.”
Exploring other cancer types
Lumicell is currently exploring if its imaging agent is activated in other tumor types, including prostate, sarcoma, esophageal, gastric, and more.
Lee ran Lumicell between 2008 and 2020. After stepping down as CEO, he decided to return to MIT to get his PhD in neuroscience, a full 50 years since he earned his master’s. Shortly thereafter, Howard Hechler took over as Lumicell’s president and chief operating officer.
Looking back, Griffith credits MIT’s culture of learning for the formation of Lumicell.
“People like David [Lee] and Moungi care about solving problems,” Griffith says. “They’re technically brilliant, but they also love learning from other people, and that’s what makes makes MIT special. People are confident about what they know, but they are also comfortable in that they don’t know everything, which drives great collaboration. We work together so that the whole is bigger than the sum of the parts.”
CNA, 1 November 20248world, 1 November 20248world Online, 1 November 2024 Vasantham News, 1 November 2024Lianhe Zaobao, 2 November 2024, Singapore, p11The New Paper, 2 November 2024
Alexandra Vacroux.File photo by Stephanie Mitchell/Harvard Staff Photographer
Nation & World
What happens next in Ukraine?
Russian policy expert examines recent deployment of North Korean troops, possible fallout of U.S. elections
Liz Mineo
Harvard Staff Writer
November 5, 2024
5 min read
The recent deployment of North Korean troops to aid Russia against Ukraine and the weak response
Russian policy expert examines recent deployment of North Korean troops, possible fallout of U.S. elections
Liz Mineo
Harvard Staff Writer
5 min read
The recent deployment of North Korean troops to aid Russia against Ukraine and the weak response from the international community could lead to a potential escalation of the conflict, warned Russian policy expert Alexandra Vacroux.
“The deployment of North Koreans to fight in the war is an escalation of exactly the kind Russia has been warning NATO not to consider, which is to say, ‘Don’t put foreign troops on the ground,’” said Vacroux, executive director of the Davis Center for Russian and Eurasian Studies. Vacroux spoke from Kyiv, where she is spending her academic leave as vice president for strategic engagement at the Kyiv School of Economics.
“And what has been the U.S. response?” she asked. “Well, pretty much so far, the geopolitical equivalent of thoughts and prayers. Secretary of Defense Lloyd Austin had said that this was very, very serious. Apart from that, there has been no reaction.”
During a Monday webinar, Vacroux spoke about the current state of the war in Ukraine as it nears the third anniversary of the Russian invasion and the future of the conflict in the aftermath of the U.S. elections. She called on the U.S. and the international community to help end the war with security guarantees that can deter future Russian aggression against Ukraine. Ukraine’s long-term security is not only in that nation’s interest but also in ours, she said.
“It is in the interest of the United States to defend democratic values and stand up to dictators,” said Vacroux. “You might not care about Ukraine all that much, but if you care about a stable world order, American trade and influence abroad, and about reducing Russia’s influence in American politics, you should be wondering what we can do to help Ukraine negotiate a just and secure conclusion to the war, and be grateful that the Ukrainians are fighting and dying so that we don’t have to.”
The conflict is largely taking place in the southern part of Ukraine, where Russia has seized 18 percent of Ukrainian territory and subjugated around 5 million people, she said.
U.S. officials estimate as many as 115,000 Russians have been killed and 500,000 wounded so far. And they put Ukrainian casualties at more than 57,500 killed and 250,000 wounded.
The situation may get worse as Russia has intensified drone and missile attacks against Ukraine. Citing Ukrainian President Volodymyr Zelensky, Vacroux said that Russia this past week launched 900 guided aerial bombs, 500 drones, and 30 missiles against Ukraine.
“Apartment buildings are being hit regularly, and particularly in the East, in Kharkiv, for example, and civilians in Kherson, which is in the south, report that they’re being chased in the street by armed drones,” said Vacroux, who spent part of this past Sunday in her closet during a five-hour Russian air raid and drone attack.
Ukraine’s incursion into Russia’s Kursk region in August managed to bring the war to Russia, and even though the territory taken was small, the offensive had an important symbolic value, said Vacroux.
It is unknown what effect the North Korean deployment ultimately may have. That nation has been providing artillery shells to Russia since 2022, noted Vacroux.
Vacroux also discussed the potential impact of the U.S. elections on Ukraine’s support. American funding is critical for Ukraine to keep fighting against Russia. Congress appropriated more than $113 billion to support the country’s response efforts, and so far, the U.S. has sent more than $60 billion in military and humanitarian aid to help the embattled country.
Former President Donald Trump has said that he views Ukraine as mainly Europe’s problem, which could affect future U.S. funding if he becomes president. If Vice President Kamala Harris wins, the situation may look more promising for Ukraine, but there are no guarantees if Congress ends up being divided after the election.
In her final remarks, Vacroux praised the resilience of Ukrainian society, and asked for more international pressure on Russia and renewed military and diplomatic efforts to ensure Ukraine’s long-term security.
“Ukraine will only stop fighting if it can be sure that Russia will stop fighting and not use a ceasefire to rearm and reattack where the world has moved on,” said Vacroux. “Ukrainians are resilient but exhausted, and many people have been displaced more than once … They’re very strong … they’re very motivated, but the stress and the trauma of the past three years are so deep. More than 80 percent of Ukrainians have lost someone that they loved in the war … It’s amazing that they continue getting up, going to work, and fighting for their country in whatever way they can.”
Photos by Stephanie Mitchell/Harvard Staff Photographer
Arts & Culture
A three-way player: Offense, defense, and design
Eileen O’Grady
Harvard Staff Writer
November 5, 2024
5 min read
Economics concentrator, Crimson guard also sells custom sneakers to college, pro athletes
Gabby Anderson’s dorm room desk does double duty: homework central for microeconomics and statistics during the
Economics concentrator, Crimson guard also sells custom sneakers to college, pro athletes
Gabby Anderson’s dorm room desk does double duty: homework central for microeconomics and statistics during the week, art studio on the weekends.
Her principal medium? The same sneaker models she wears playing guard on the women’s basketball team — along with those she custom designs for clients, including some high-profile professional athletes.
On a recent afternoon Anderson ’26, who lives in Kirkland House, unpacked her brushes and acrylic leather paints from their plastic crate and unboxed a pair of fresh white Nike Air Force 1s. Dipping her flat paintbrush into the red pigment, Anderson began applying the first layer of her planned design: floral patterns and song lyrics set against a background of fiery red and yellow hues.
“My favorite part is learning peoples’ stories behind why they want their design,” Anderson said. “As I’ve continued to create for people, presenting them with their shoe that expresses exactly what they want brings me so much joy because you see people light up when you do something for them like that.”
Anderson is an economics concentrator with a studio art secondary, balancing academics and athletics with her creative financialendeavor. Her work is recognizable for its bright colors, bold lines, and playful animated style.
Graffiti by Gabby started in 2020 as a pandemic hobby when Anderson was taking high school classes from home in Ohio. Inspired by a design she saw on social media, Anderson decided to paint a pair of her own sneakers.
“Then I had a friend ask me to make them a pair of shoes,” she said. “After that, I was like, ‘Oh, it’s kind of fun, maybe I’ll do it some more.’”
After starting an Instagram page to showcase her work, her designs began getting attention. Her first request for a custom pair of sneakers came during the summer of 2020 nationwide Black Lives Matter protests against police brutality. Nicki Collen, then head coach for the Atlanta Dream, asked Anderson to design her a pair of sneakers to commemorate Breonna Taylor.
“I was so excited. I remember she was on ESPN, and they mentioned my name while I was watching,” Anderson recalled. “I freaked out in the car. It was like, ‘Oh my gosh, my shoes are on ESPN. They just mentioned me,’ And that’s when it hit that I’m doing an actual thing, and this is probably an actual business, and I need to take it seriously.”
While still in high school, she was commissioned to paint sneakers for then-Seattle Storm star Sue Bird, Golden State Warriors’ Moses Moody (who was then at Arkansas), and Delaware Blue Coats’ R.J. Hampton Jr. She designed shoes for a Nike campaign with Dallas Mavericks player Kyrie Irving, and did a series of commissioned paintings for Walmart’s “Beauty in Color” campaign.
In 2020, she also painted sneakers for all 15 members of Texas A&M University women’s basketball team, designs that reflected a range of messages the players wanted to promote, from heart disease awareness to Indigenous pride and female empowerment.
“Each girl gave me a list of things that they were very passionate about, something that they wanted on their shoe, and I followed up with each of them and was like, ‘Can you tell me more about this?’” Anderson recalled. “I got to learn not only their stories and where they came from, but what makes them who they are, what drives them to play basketball.”
She has branched out from sneakers. As a first-year, she painted cleats for New England Patriots player Deatrich Wise Jr., as part of the NFL’s “My Cause, My Cleats” project. Last year she designed 10 pairs of skates for the U.S. Figure Skating Championships.
She also last year launched her own line of kids’ school supplies — backpacks, lunch boxes, and pencil pouches — tailored toward African American children and emblazoned with the slogan “Brilliant, Authentic, AND Black.” The line was inspired by a pencil pouch Anderson had as a child, which had a picture of a little girl who looked like her.
“I want kids to walk into a store and not just see one backpack with a Doc McStuffins or a Princess Tiana on it, but someone who represents them in their youthfulness,” Anderson explained. “I also wanted it to inspire them to be more than just what they see on that bag, which is where I came up with ‘Brilliant, Authentic, AND Black.’ I really wanted kids to understand that you can be all three, and being all three is what’s going to help you thrive in whatever space you’re in.”
Anderson said that school, athletics, and Grafitti by Gabby actually mesh more easily than one might expect.
“In my classes I am learning about different things to do with my business, and my art classes are teaching me new techniques that I can use when I’m making shoes,” she said. “Working with athletes ties directly back into basketball, and my own experiences from that can help me relate to these professional athletes I’m working with.”
Through grants, awards, events, publications, a podcast, and more, the Center provides resources and a central hub for researchers across Penn tackling the energy transition.
Through grants, awards, events, publications, a podcast, and more, the Center provides resources and a central hub for researchers across Penn tackling the energy transition.
Weill Cornell Medicine researchers have received a five-year, $6.2 million grant from the National Institute on Aging, part of the National Institutes of Health, to build a portable, high-resolution Positron Emission Tomography scanner that can detect the earliest stages of Alzheimer’s disease.
Weill Cornell Medicine researchers have received a five-year, $6.2 million grant from the National Institute on Aging, part of the National Institutes of Health, to build a portable, high-resolution Positron Emission Tomography scanner that can detect the earliest stages of Alzheimer’s disease.
On 5 November 2024, Greater Manchester’s Mayor Andy Burnham visited Cambridge to celebrate and further cement a groundbreaking partnership between the two cities' innovation ecosystems. The collaboration, which was officially launched in 2023, is aimed at leveraging the combined strengths of Manchester and Cambridge to fuel the growth of start-ups, attract investment, and foster inclusive economic development across the UK.
The visit marked an important step forward in this trailblazing collabo
On 5 November 2024, Greater Manchester’s Mayor Andy Burnham visited Cambridge to celebrate and further cement a groundbreaking partnership between the two cities' innovation ecosystems. The collaboration, which was officially launched in 2023, is aimed at leveraging the combined strengths of Manchester and Cambridge to fuel the growth of start-ups, attract investment, and foster inclusive economic development across the UK.
The visit marked an important step forward in this trailblazing collaboration, which is the first of its kind in the UK. Leading academic, business and civil figures from both cities were in attendance including: Dr Nik Johnson, Mayor of Cambridgeshire and Peterborough; Professor Deborah Prentice, Vice-Chancellor of the University of Cambridge; Professor Duncan Ivison, Vice-Chancellor of the University of Manchester; Professor Lou Cordwell, Professor of Innovation, University of Manchester; Dr Diarmuid O’Brien, Pro-Vice-Chancellor for Innovation, University of Cambridge and Dr Kathryn Chapman, Executive Director, Innovate Cambridge.
The delegation also included representatives from the business community, including AstraZeneca, which is deepening its support for entrepreneurial ventures through mentorship and collaboration.
Strengthening connections between two powerhouses
The day began with a tour of Cambridge’s West Innovation District, an area known for its cutting-edge facilities and academic institutions. The tour was led by Dr Diarmuid O’Brien, who highlighted the district’s role in driving forward innovation in areas ranging from aerospace to zero-carbon technologies. One key stop was the world-famous Whittle Laboratory, renowned for its work on decarbonising aviation, and the new Cavendish Laboratory, which hosts the University’s Physics department and supports the creation of innovative start-ups.
At the Cambridge Graphene Centre, Professor Andrea Ferrari, Director of the Centre, was joined by Manchester University colleagues to welcome Mayor Burnham and Dr Johnson for an in-depth session focused on graphene research and the ongoing collaboration with Manchester’s National Graphene Institute.
Discussions centred around the commercialisation of cutting-edge research from both institutions and the potential for scaling these innovations in both cities. Spinout companies Paragraf and Versarian spoke about the opportunities the partnership could unlock for future collaboration, talent exchange, and investment.
AstraZeneca expands mentorship programme to Manchester
Another highlight of the day was a visit to AstraZeneca’s Discovery Centre (DISC) in the Cambridge Biomedical Campus, where the company announced that its ‘AstraZeneca Exchange’ mentorship programme would be expanded to support entrepreneurs and start-ups in Greater Manchester. The programme, which is already active in Cambridge, connects start-ups with AstraZeneca’s network of scientific and business experts, providing invaluable support to early-stage ventures.
Inclusive innovation and regional growth
A key theme of the visit was ensuring that innovation-driven growth benefits all communities. This commitment to inclusive innovation was explored during a roundtable discussion, which included representatives from the Bennett Institute for Public Policy in Cambridge and The Productivity Institute in Manchester. The conversation centred around how innovation can be made more accessible to economically lagging regions and marginalised groups, and how to ensure that the fruits of innovation are equitably distributed.
The report is the product of collaboration between the two Institutes and explores how innovation can address regional disparities.“An inclusive approach to innovation focuses not only on the process and outcomes of innovation, but also considers who is involved in it, what are the social and economic conditions that foster it, and perhaps most importantly, keeps in mind which places and communities benefit from innovation” said Professor Kenny.
This commitment to inclusive innovation was further reflected in the opening of The Glasshouse, a new facility from Innovate Cambridge dedicated to supporting the next generation of entrepreneurs from diverse backgrounds. The Glasshouse will serve as a hub and incubator for new ideas and technologies, providing mentorship, resources, and networking opportunities for start-ups.
A partnership for the future
As the day concluded, Mayor Burnham reflected on the immense potential of the partnership between Greater Manchester and Cambridge. “Greater Manchester and Cambridge are two world-renowned centres of innovation. This partnership is breaking new ground, linking the North of England with the Golden triangle to drive regional and national economic growth. We also share an ambition for growth that benefits everyone, with more people and businesses able to access the opportunities created by innovation.
“Our two places have distinct identities and unique strengths, but we also have a lot in common – world-leading universities and dynamic, fast-growing economies. By working together, we can be greater than the sum of our parts.”
With both cities continuing to push the boundaries of scientific and technological advancements, the partnership between Greater Manchester and Cambridge is poised to play a pivotal role in shaping the UK’s future innovation landscape.The visit has underscored the shared commitment to advancing regional growth, fostering collaboration, and ensuring that the benefits of innovation are felt by all.
The Vice-Chancellor of Cambridge University, Professor Deborah Prentice said: "This collaboration between our two cities and universities is a testament to our shared ambition and the immense opportunities ahead. Over the past five years, we've seen thousands of co-publications as well as deep collaboration in graphene and materials research, showcasing the power of our joint efforts. This partnership isn’t just about what we’ve achieved; it’s about what we’re building—a dynamic platform to connect and strengthen our innovation ecosystems for the future."
This Cambridge x Manchester collaboration promises to be more than just a stepping stone—it's a foundation for the future of innovation in the UK.
Visit from Manchester Mayor signals a new era of collaboration between two UK innovation hubs with a focus on boosting regional economies and fostering inclusive growth.
This partnership is breaking new ground, linking the North of England with the Golden triangle to drive regional and national economic growth.
Over the past two decades, new technologies have helped scientists generate a vast amount of biological data. Large-scale experiments in genomics, transcriptomics, proteomics, and cytometry can produce enormous quantities of data from a given cellular or multicellular system.However, making sense of this information is not always easy. This is especially true when trying to analyze complex systems such as the cascade of interactions that occur when the immune system encounters a foreign pathogen
Over the past two decades, new technologies have helped scientists generate a vast amount of biological data. Large-scale experiments in genomics, transcriptomics, proteomics, and cytometry can produce enormous quantities of data from a given cellular or multicellular system.
However, making sense of this information is not always easy. This is especially true when trying to analyze complex systems such as the cascade of interactions that occur when the immune system encounters a foreign pathogen.
MIT biological engineers have now developed a new computational method for extracting useful information from these datasets. Using their new technique, they showed that they could unravel a series of interactions that determine how the immune system responds to tuberculosis vaccination and subsequent infection.
This strategy could be useful to vaccine developers and to researchers who study any kind of complex biological system, says Douglas Lauffenburger, the Ford Professor of Engineering in the departments of Biological Engineering, Biology, and Chemical Engineering.
“We’ve landed on a computational modeling framework that allows prediction of effects of perturbations in a highly complex system, including multiple scales and many different types of components,” says Lauffenburger, the senior author of the new study.
Shu Wang, a former MIT postdoc who is now an assistant professor at the University of Toronto, and Amy Myers, a research manager in the lab of University of Pittsburgh School of Medicine Professor JoAnne Flynn, are the lead authors of a new paper on the work, which appears today in the journal Cell Systems.
Modeling complex systems
When studying complex biological systems such as the immune system, scientists can extract many different types of data. Sequencing cell genomes tells them which gene variants a cell carries, while analyzing messenger RNA transcripts tells them which genes are being expressed in a given cell. Using proteomics, researchers can measure the proteins found in a cell or biological system, and cytometry allows them to quantify a myriad of cell types present.
Using computational approaches such as machine learning, scientists can use this data to train models to predict a specific output based on a given set of inputs — for example, whether a vaccine will generate a robust immune response. However, that type of modeling doesn’t reveal anything about the steps that happen in between the input and the output.
“That AI approach can be really useful for clinical medical purposes, but it’s not very useful for understanding biology, because usually you’re interested in everything that’s happening between the inputs and outputs,” Lauffenburger says. “What are the mechanisms that actually generate outputs from inputs?”
To create models that can identify the inner workings of complex biological systems, the researchers turned to a type of model known as a probabilistic graphical network. These models represent each measured variable as a node, generating maps of how each node is connected to the others.
Probabilistic graphical networks are often used for applications such as speech recognition and computer vision, but they have not been widely used in biology.
Lauffenburger’s lab has previously used this type of model to analyze intracellular signaling pathways, which required analyzing just one kind of data. To adapt this approach to analyze many datasets at once, the researchers applied a mathematical technique that can filter out any correlations between variables that are not directly affecting each other. This technique, known as graphical lasso, is an adaptation of the method often used in machine learning models to strip away results that are likely due to noise.
“With correlation-based network models generally, one of the problems that can arise is that everything seems to be influenced by everything else, so you have to figure out how to strip down to the most essential interactions,” Lauffenburger says. “Using probabilistic graphical network frameworks, one can really boil down to the things that are most likely to be direct and throw out the things that are most likely to be indirect.”
Mechanism of vaccination
To test their modeling approach, the researchers used data from studies of a tuberculosis vaccine. This vaccine, known as BCG, is an attenuated form of Mycobacterium bovis. It is used in many countries where TB is common but isn’t always effective, and its protection can weaken over time.
In hopes of developing more effective TB protection, researchers have been testing whether delivering the BCG vaccine intravenously or by inhalation might provoke a better immune response than injecting it. Those studies, performed in animals, found that the vaccine did work much better when given intravenously. In the MIT study, Lauffenburger and his colleagues attempted to discover the mechanism behind this success.
The data that the researchers examined in this study included measurements of about 200 variables, including levels of cytokines, antibodies, and different types of immune cells, from about 30 animals.
The measurements were taken before vaccination, after vaccination, and after TB infection. By analyzing the data using their new modeling approach, the MIT team was able to determine the steps needed to generate a strong immune response. They showed that the vaccine stimulates a subset of T cells, which produce a cytokine that activates a set of B cells that generate antibodies targeting the bacterium.
“Almost like a roadmap or a subway map, you could find what were really the most important paths. Even though a lot of other things in the immune system were changing one way or another, they were really off the critical path and didn't matter so much,” Lauffenburger says.
The researchers then used the model to make predictions for how a specific disruption, such as suppressing a subset of immune cells, would affect the system. The model predicted that if B cells were nearly eliminated, there would be little impact on the vaccine response, and experiments showed that prediction was correct.
This modeling approach could be used by vaccine developers to predict the effect their vaccines may have, and to make tweaks that would improve them before testing them in humans. Lauffenburger’s lab is now using the model to study the mechanism of a malaria vaccine that has been given to children in Kenya, Ghana, and Malawi over the past few years.
“The advantage of this computational approach is that it filters out many biological targets that only indirectly influence the outcome and identifies those that directly regulate the response. Then it's possible to predict how therapeutically altering those biological targets would change the response. This is significant because it provides the basis for future vaccine and trial designs that are more data driven,” says Kathryn Miller-Jensen, a professor of biomedical engineering at Yale University, who was not involved in the study.
Lauffenburger’s lab is also using this type of modeling to study the tumor microenvironment, which contains many types of immune cells and cancerous cells, in hopes of predicting how tumors might respond to different kinds of treatment.
The research was funded by the National Institute of Allergy and Infectious Diseases.
A team of three European researchers will develop an imaging method to non-invasively measure the stiffness of moving organs such as the heart. The researchers will be supported by the European Research Council.
A team of three European researchers will develop an imaging method to non-invasively measure the stiffness of moving organs such as the heart. The researchers will be supported by the European Research Council.
An elderly woman sits in her wheelchair, eagerly awaiting her son’s weekly visit. But the man who walks through the door with a bouquet of flowers is a stranger to her, and instead of welcoming him, she cries out for her caregiver to send him away.After the man tries and fails to convince her that he is indeed her son, the caregiver suggests playing some music to awaken his mother’s memories and bring her mind back to reality, knowing that she used to be a passionate opera singer. Upon hearing a
An elderly woman sits in her wheelchair, eagerly awaiting her son’s weekly visit. But the man who walks through the door with a bouquet of flowers is a stranger to her, and instead of welcoming him, she cries out for her caregiver to send him away.
After the man tries and fails to convince her that he is indeed her son, the caregiver suggests playing some music to awaken his mother’s memories and bring her mind back to reality, knowing that she used to be a passionate opera singer. Upon hearing a familiar tune, the old woman’s fear melts away and she shares a brief, precious moment of singing and playing music with her son like they used to. All too soon, the moment passes and she retreats into her own world again, but her son is filled with gratitude for the experience, as fleeting as it was.
This is a scene from the opera Losing Lily, which had its world premiere on 15 and 16 October 2024, the culmination of a four-year long project about dementia and music, titled LILY, that comprises Losing Lily and a documentary called A Day A Lily. The project is based on the personal experiences of initiator and co-creator Dr Wong Su Sun and scientific research into the link between music and memory.
While the scene is fictional, the experience of being repeatedly forgotten by someone who should know them well will be familiar to many Singaporeans who have a loved one with dementia. What is perhaps less common is the knowledge that music has a remarkable power to unlock memories and bring moments of joy to people with dementia.
The project aims to raise social awareness of dementia and the use of music to help patients cope with the disease. Research into music interventions for health and well-being is a growing field that is studied in NUS at the Centre for Music and Health (CMH) in the Yong Siew Toh Conservatory of Music (YST).
Raising awareness through opera
Dementia has been poorly understood for many years, but with Singapore’s rapidly ageing population, it is becoming a social issue that cannot be ignored. About 1 in 11 people aged 60 and above in Singapore today have dementia, and the total number of people with dementia is projected to reach 152,000 in 2030.
The LILY project uses opera and documentary film to bring emotion into what could otherwise be a dull discussion of the medical condition while highlighting the evidence-backed use of music interventions.
Dr Wong, an opera singer and vocal pedagogue, initiated the project in 2020 to give a voice to those who are suffering silently, drawing from her personal experience of having served as caregiver to her parents and grandmother through illness.
“Each of the three characters in the opera, to a certain extent, is a reflection of my own life as a singer and teacher, daughter, and caregiver,” she shared. “I find it particularly healing that each character has moments of soliloquy where their innermost thoughts are expressed and heard by the audience.”
The collaborative project was an extensive process involving composing and scriptwriting, consulting researchers and examining existing portrayals of dementia, and engaging with YST staff and student musicians to bring the opera to life. The documentary A Day A Lily was first publicly screened in 2022 at the National Museum of Singapore, and the opera Losing Lily took another two years to create and stage, with the premiere taking place at the NUS University Cultural Centre.
At the premiere, the audience first watched the documentary, which interlaces an early version of the narrative with interviews of people living with dementia, their family members, and medical professionals. Then, the opera was performed live, illustrating what it is like to live with dementia through the characters of an opera singer, her son, and her caregiver.
Said Associate Professor Chen Zhangyi, who composed the opera with playwright Jean Tay: “Everything comes together in this work as a multidisciplinary art form, a perfect example of the interdisciplinary connections that we are trying to achieve in NUS.”
The healing power of music
The scene of Lily and her son connecting through a song is an example of how music can facilitate memory recall or reminiscences, which can improve patients’ moods and reconnect them with their loved ones.
Said Assistant Professor Kat Agres, founder and director of the Centre for Music and Health (CMH): “It is widely recognised that music has this amazing power to help unlock memories in dementia patients. It's not pure magic and it doesn't work in every case, but it can be very effective and be a wonderful way to help connect the patient with their past.”
At CMH, multiple studies are ongoing to explore the possibilities of using music as a non-invasive, non-pharmacological, and accessible treatment method for a variety of health issues in three main areas of mental health, youth and student well-being, and healthy ageing and community wellness.
One programme, Movin’ and Groovin’ for Wellness, is studying the impact of group activities – specifically dancing, drumming, and improvisation – on supporting mental health, facilitating social connections, and fostering creative expression. A 10-week randomised controlled trial with NUS students found positive results in all three aspects, supporting the use of such activities to promote youth and student well-being.
Other ongoing projects under the pillar for healthy ageing and community wellness include Sing Out Loud, a collaboration with the Esplanade to explore the effectiveness of regular group singing on decreasing behavioural agitation and improving quality of life for patients with dementia.
Even as research uncovers new insights into the power of music as a health intervention, artworks like LILY are equally important in disseminating knowledge about important health topics, Dr Agres said.
“It's one thing to say, ‘As dementia progresses in the patient, there will be an increase in behavioural symptoms and agitation.’ It's another thing to see it unfolding in front of your eyes – to witness how complex it is, and how difficult it may feel for the family and the patient.”
While there are no immediate plans for more presentations of LILY, the team has already received expressions of interest to collaborate on staging the opera for more audiences in Singapore and overseas, and they are open to discussing ways to extend the project’s impact.
Dr Wong hopes that the opera will become a platform to foster greater understanding and support for people living with dementia – for example, smaller-scale stagings or community performance workshops could encourage people to put themselves in the characters’ shoes and experience the patience and communication skills needed when interacting with people who have dementia. She also hopes to add a chorus to the opera representing the roles of bystanders in society, to show how the public can move from empathising with patients and their loved ones to actively contributing to an inclusive ecosystem.
“This opera shows you what’s ahead, how you could end up, and how you would expect people to treat you when you are in the shoes of any of the characters,” she said. “It is a call for not only empathy, but also greater understanding and engagement from the community.”
Large language models can do impressive things, like write poetry or generate viable computer programs, even though these models are trained to predict words that come next in a piece of text.Such surprising capabilities can make it seem like the models are implicitly learning some general truths about the world.But that isn’t necessarily the case, according to a new study. The researchers found that a popular type of generative AI model can provide turn-by-turn driving directions in New York Ci
Large language models can do impressive things, like write poetry or generate viable computer programs, even though these models are trained to predict words that come next in a piece of text.
Such surprising capabilities can make it seem like the models are implicitly learning some general truths about the world.
But that isn’t necessarily the case, according to a new study. The researchers found that a popular type of generative AI model can provide turn-by-turn driving directions in New York City with near-perfect accuracy — without having formed an accurate internal map of the city.
Despite the model’s uncanny ability to navigate effectively, when the researchers closed some streets and added detours, its performance plummeted.
When they dug deeper, the researchers found that the New York maps the model implicitly generated had many nonexistent streets curving between the grid and connecting far away intersections.
This could have serious implications for generative AI models deployed in the real world, since a model that seems to be performing well in one context might break down if the task or environment slightly changes.
“One hope is that, because LLMs can accomplish all these amazing things in language, maybe we could use these same tools in other parts of science, as well. But the question of whether LLMs are learning coherent world models is very important if we want to use these techniques to make new discoveries,” says senior author Ashesh Rambachan, assistant professor of economics and a principal investigator in the MIT Laboratory for Information and Decision Systems (LIDS).
Rambachan is joined on a paper about the work by lead author Keyon Vafa, a postdoc at Harvard University; Justin Y. Chen, an electrical engineering and computer science (EECS) graduate student at MIT; Jon Kleinberg, Tisch University Professor of Computer Science and Information Science at Cornell University; and Sendhil Mullainathan, an MIT professor in the departments of EECS and of Economics, and a member of LIDS. The research will be presented at the Conference on Neural Information Processing Systems.
New metrics
The researchers focused on a type of generative AI model known as a transformer, which forms the backbone of LLMs like GPT-4. Transformers are trained on a massive amount of language-based data to predict the next token in a sequence, such as the next word in a sentence.
But if scientists want to determine whether an LLM has formed an accurate model of the world, measuring the accuracy of its predictions doesn’t go far enough, the researchers say.
For example, they found that a transformer can predict valid moves in a game of Connect 4 nearly every time without understanding any of the rules.
So, the team developed two new metrics that can test a transformer’s world model. The researchers focused their evaluations on a class of problems called deterministic finite automations, or DFAs.
A DFA is a problem with a sequence of states, like intersections one must traverse to reach a destination, and a concrete way of describing the rules one must follow along the way.
They chose two problems to formulate as DFAs: navigating on streets in New York City and playing the board game Othello.
“We needed test beds where we know what the world model is. Now, we can rigorously think about what it means to recover that world model,” Vafa explains.
The first metric they developed, called sequence distinction, says a model has formed a coherent world model it if sees two different states, like two different Othello boards, and recognizes how they are different. Sequences, that is, ordered lists of data points, are what transformers use to generate outputs.
The second metric, called sequence compression, says a transformer with a coherent world model should know that two identical states, like two identical Othello boards, have the same sequence of possible next steps.
They used these metrics to test two common classes of transformers, one which is trained on data generated from randomly produced sequences and the other on data generated by following strategies.
Incoherent world models
Surprisingly, the researchers found that transformers which made choices randomly formed more accurate world models, perhaps because they saw a wider variety of potential next steps during training.
“In Othello, if you see two random computers playing rather than championship players, in theory you’d see the full set of possible moves, even the bad moves championship players wouldn’t make,” Vafa explains.
Even though the transformers generated accurate directions and valid Othello moves in nearly every instance, the two metrics revealed that only one generated a coherent world model for Othello moves, and none performed well at forming coherent world models in the wayfinding example.
The researchers demonstrated the implications of this by adding detours to the map of New York City, which caused all the navigation models to fail.
“I was surprised by how quickly the performance deteriorated as soon as we added a detour. If we close just 1 percent of the possible streets, accuracy immediately plummets from nearly 100 percent to just 67 percent,” Vafa says.
When they recovered the city maps the models generated, they looked like an imagined New York City with hundreds of streets crisscrossing overlaid on top of the grid. The maps often contained random flyovers above other streets or multiple streets with impossible orientations.
These results show that transformers can perform surprisingly well at certain tasks without understanding the rules. If scientists want to build LLMs that can capture accurate world models, they need to take a different approach, the researchers say.
“Often, we see these models do impressive things and think they must have understood something about the world. I hope we can convince people that this is a question to think very carefully about, and we don’t have to rely on our own intuitions to answer it,” says Rambachan.
In the future, the researchers want to tackle a more diverse set of problems, such as those where some rules are only partially known. They also want to apply their evaluation metrics to real-world, scientific problems.
This work is funded, in part, by the Harvard Data Science Initiative, a National Science Foundation Graduate Research Fellowship, a Vannevar Bush Faculty Fellowship, a Simons Collaboration grant, and a grant from the MacArthur Foundation.
A new MIT initiative aims to elevate human-centered research and teaching, and bring together scholars in the humanities, arts, and social sciences with their colleagues across the Institute.The MIT Human Insight Collaborative (MITHIC) launched earlier this fall. A formal kickoff event for MITHIC was held on campus Monday, Oct. 28, before a full audience in MIT’s Huntington Hall (Room 10-250). The event featured a conversation with Min Jin Lee, acclaimed author of “Pachinko,” moderated by Linda
A new MIT initiative aims to elevate human-centered research and teaching, and bring together scholars in the humanities, arts, and social sciences with their colleagues across the Institute.
The MIT Human Insight Collaborative (MITHIC) launched earlier this fall. A formal kickoff event for MITHIC was held on campus Monday, Oct. 28, before a full audience in MIT’s Huntington Hall (Room 10-250). The event featured a conversation with Min Jin Lee, acclaimed author of “Pachinko,” moderated by Linda Pizzuti Henry SM ’05, co-owner and CEO of Boston Globe Media.
Initiative leaders say MITHIC will foster creativity, inquiry, and understanding, amplifying the Institute’s impact on global challenges like climate change, AI, pandemics, poverty, democracy, and more.
President Sally Kornbluth says MITHIC is the first of a new model known as the MIT Collaboratives, designed among other things to foster and support new collaborations on compelling global problems. The next MIT Collaborative will focus on life sciences and health.
“The MIT Collaboratives will make it easier for our faculty to ‘go big’ — to pursue the most innovative ideas in their disciplines and build connections to other fields,” says Kornbluth.
“We created MITHIC with a particular focus on the human-centered fields, to help advance research with the potential for global impact. MITHIC also has another, more local aim: to support faculty in developing fresh approaches to teaching and research that will engage and inspire a new generation of students,” Kornbluth adds.
A transformative opportunity
MITHIC is co-chaired by Anantha Chandrakasan, chief innovation and strategy officer, dean of the School of Engineering, and the Vannevar Bush Professor of Electrical Engineering and Computer Science; and Agustin Rayo, Kenan Sahin Dean of the School of Humanities, Arts, and Social Sciences (SHASS).
“MITHIC is an incredibly exciting and meaningful initiative to me as it represents MIT at its core — bringing broad perspectives and human insights to solve some of the world’s most important problems,” says Chandrakasan. “It offers the opportunity to shape the future of research and education at MIT through advancing core scholarship in the individual humanities, arts, and social sciences disciplines, but also through cross-cutting problem formulation and problem-solving. I have no doubt MITHIC will inspire our community to think differently and work together in ways that will have a lasting impact on society.”
Rayo says true innovation must go beyond technology to encompass the full complexity of the human experience.
“At MIT, we aim to make the world a better place. But you can't make the world a better place unless you understand its full economic, political, social, ethical — human — dimensions,” Rayo says. “MITHIC can help ensure that MIT educates broad-minded students, who are ready for the multidimensional challenges of the future.”
Rayo sees MITHIC as a transformative opportunity for MIT.
“MIT needs an integrated approach, which combines STEM with the human-centered disciplines. MITHIC can help catalyze that integration,” he says.
Mark Gorenberg ’76, chair of the MIT Corporation, says MITHIC represents a commitment to collaboration, a spirit of curiosity, and the belief that uniting the humanities and sciences results in solutions that are not only innovative, but meaningful and lasting.
“MIT has long been a place where boundless ideas and entrepreneurial energy come together to meet the world’s toughest challenges,” Gorenberg says. “With MITHIC, we’re adding a powerful new layer to that mission — one that captures the richness of human experience and imagination.”
Support for MITHIC comes from all five MIT schools, the MIT Schwarzman College of Computing, and the Office of the Provost, along with philanthropic support.
Charlene Kabcenell ’79, a life member of the MIT Corporation, and Derry Kabcenell ’75 chose to support MITHIC financially.
“MIT produces world-class scientists and technologists, but expertise in the skills of these areas is not enough. We are excited that the collaborations catalyzed by this initiative will help our graduates to stay mindful of the impact of their work on people and society,” they say.
Ray Stata ’57, MIT Corporation life member emeritus, is also a benefactor of MITHIC.
“In industry, it is not just technical innovation and breakthroughs that win, but also culture, in the ways people collaborate and work together. These are skills and behaviors that can be learned through a deeper understanding of humanities and social sciences. This has always been an important part of MIT’s education and I am happy to see the renewed attention being given to this aspect of the learning experience,” he says.
“A potential game changer”
Keeril Makan, associate dean for strategic initiatives in SHASS and the Michael (1949) and Sonja Koerner Music Composition Professor, is the faculty lead for MITHIC.
“MITHIC is about incentivizing collaboration, not research in specific areas,” says Makan. “It’s a ground-up approach, where we support faculty based upon the research that is of interest to them, which they identify.”
MITHIC consists of three new funding opportunities for faculty, the largest of which is the SHASS+ Connectivity Fund. For all three funds, proposals can be for projects ready to begin, as well as planning grants in preparation for future proposals.
The SHASS+ Connectivity Fund will support research that bridges between SHASS fields and other fields at MIT. Proposals require a project lead in SHASS and another project lead whose primary appointment is outside of SHASS.
The SHASS+ Connectivity Fund is co-chaired by David Kaiser, the Germehausen Professor of the History of Science and professor of physics, and Maria Yang, deputy dean of engineering and Kendall Rohsenow Professor of Mechanical Engineering.
“MIT has set an ambitious agenda for itself focused on addressing extremely complex and challenging problems facing society today, such as climate change, and there is a critical role for technological solutions to address these problems,” Yang says. “However, the origin of these problems are in part due to humans, so humanistic considerations need to be part of the solution. Such problems cannot be conquered by technology alone.”
Yang says the goal of the SHASS+ Connectivity Fund is to enhance MIT’s research by building interdisciplinary teams, embedding a human-centered focus.
“My hope is that these collaborations will build bridges between SHASS and the rest of MIT, and will lead to integrated research that is more powerful and meaningful together,” says Yang.
Proposals for the first round of projects are due Nov. 22, but MITHIC is already bringing MIT faculty together to share ideas in hopes of sparking ideas for potential collaboration.
An information session and networking reception was held in September. MITHIC has also been hosting a series of “Meeting of the Minds” events. Makan says these have been opportunities for faculty and teaching staff to make connections around a specific topic or area of interest with colleagues they haven’t previously worked with.
Recent Meeting of the Minds sessions have been held on topics like cybersecurity, social history of math, food security, and rebuilding Ukraine.
“Faculty are already educating each other about their disciplines,” says Makan. “What happens in SHASS has been opaque to faculty in the other schools, just as the research in the other schools has been opaque to the faculty in SHASS. We’ve seen progress with initiatives like the Social and Ethical Responsibilities of Computing (SERC), when it comes to computing. MITHIC will broaden that scope.”
The leadership of MITHIC is cross-disciplinary, with a steering committee of faculty representing all five schools and the MIT Schwarzman College of Computing.
Iain Cheeseman, the Herman and Margaret Sokol Professor of Biology, is a member of the MITHIC steering committee. He says that while he continues to be amazed and inspired by the diverse research and work from across MIT, there’s potential to go even further by working together and connecting across diverse perspectives, ideas, and approaches.
“The bold goal and mission of MITHIC, to connect the humanities at MIT to work being conducted across the other schools at MIT, feels like a potential game-changer,” he says. “I am really excited to see the unexpected new work and directions that come out of this initiative, including hopefully connections that persist and transform the work across MIT.”
Enhancing the arts and humanities
In addition to the SHASS+ Connectivity Fund, MITHIC has two funds aimed specifically at enhancing research and teaching within SHASS.
The Humanities Cultivation Fund will support projects from the humanities and arts in SHASS. It is co-chaired by Arthur Bahr, professor of literature, and Anne McCants, the Ann F. Friedlaender Professor of History and SHASS research chair.
“Humanistic scholarship and artistic creation have long been among MIT’s hidden gems. The Humanities Cultivation Fund offers an exciting new opportunity to not only allow such work to continue to flourish, but also to give it greater visibility across the MIT community and into the wider world of scholarship. The fund aspires to cultivate — that is, to seed and nurture — new ideas and modes of inquiry into the full spectrum of human culture and expression,” says McCants.
The SHASS Education Innovation Fund will support new educational approaches in SHASS fields. The fund is co-chaired by Eric Klopfer, professor of comparative media studies/writing, and Emily Richmond Pollock, associate professor of music and SHASS undergraduate education chair.
Pollock says the fund is a welcome chance to support colleagues who have a strong sense of where teaching in SHASS could go next.
“We are looking for efforts that address contemporary challenges of teaching and learning, with approaches that can be tested in a specific context and later applied across the school. The crucial role of SHASS in educating MIT students in all fields means that what we devise here in our curriculum can have huge benefits for the Institute as a whole.”
Makan says infusing MIT’s human-centered disciplines with support is an essential part of MITHIC.
“The stronger these units are, the more the human-centered disciplines permeate the student experience, ultimately helping to build a stronger, more inclusive MIT,” says Makan.
The Lemelson-MIT Program has announced the 2024-25 InvenTeams — eight teams of high school students, teachers, and mentors from across the country. Each team will each receive $7,500 in grant funding and year-long support to build a technological invention to solve a problem of their own choosing. The students’ inventions are inspired by real-world problems they identified in their local communities.The InvenTeams were selected by a respected panel consisting of university professors, inventors,
The Lemelson-MIT Program has announced the 2024-25 InvenTeams — eight teams of high school students, teachers, and mentors from across the country. Each team will each receive $7,500 in grant funding and year-long support to build a technological invention to solve a problem of their own choosing. The students’ inventions are inspired by real-world problems they identified in their local communities.
The InvenTeams were selected by a respected panel consisting of university professors, inventors, entrepreneurs, industry professionals, and college students. Some panel members were former InvenTeam members now working in industry. The InvenTeams are focusing on problems facing their local communities, with a goal that their inventions will have a positive impact on beneficiaries and, ultimately, improve the lives of others beyond their communities.
This year’s teams are:
Battle Creek Area Mathematics and Science Center (Battle Creek, Michigan)
Cambridge Rindge and Latin School (Cambridge, Massachusetts)
Colegio Rosa-Bell (Guaynabo, Puerto Rico)
Edison High School (Edison, New Jersey)
Massachusetts Academy of Math and Science (Worcester, Massachusetts)
Nitro High School (Nitro, West Virginia)
Southcrest Christian School (Lubbock, Texas)
Ygnacio Valley High School (Concord, California)
InvenTeams are comprised of students, teachers and community mentors who pursue year-long invention projects involving creative thinking, problem-solving, and hands-on learning in science, technology, engineering, and mathematics. The InvenTeams’ prototype inventions will be showcased at a technical review within their home communities in February 2025, and then again as a final prototype at EurekaFest— an invention celebration taking place June 9-11, 2025, at MIT.
“The InvenTeams are focusing on solving problems that impact their local communities,” says Leigh Estabrooks, Lemelson-MIT’s invention education officer. “Teams are focusing their technological solutions — their inventions — on health and well-being, environmental issues, and safety concerns. These high school students are not just problem-solvers of tomorrow, they are problem solvers todayhelping to make our world healthier, greener, and safer.”
This year the Lemelson-MIT Program and the InvenTeams grants initiative celebrate a series of firsts in the annual high school invention grant program. For the first time, a team from their home city of Cambridge, Massachusetts, will participate, representing the Cambridge community’s innovative spirit on a national stage. Additionally, the program welcomes the first team from Puerto Rico, highlighting the expanding reach of the InvenTeams grants initiative. The pioneering teams exemplify the diversity and creativity that fuel invention.
The InvenTeams grants initiative, now in its 21st year, has enabled 18 teams of high school students to be awarded U.S. patents for their projects. Intellectual property education is combined with invention education offerings as part of the Lemelson-MIT Program’s deliberate efforts to remedy historic inequities among those who develop inventions, protect their intellectual property, and commercialize their creations. The ongoing efforts empower students from all backgrounds, equipping them with invaluable problem-solving skills that will serve them well throughout their academic journeys, professional pursuits, and personal lives. The program has worked with over 4,000 students across 304 different InvenTeams nationwide and has included:
partnering with intellectual property (IP) law firms to provide pro bono legal support;
collaborating with industry-leading companies that provide technical guidance and mentoring;
providing professional development for teachers on invention education and IP;
assisting teams with identifying resources within their communities’ innovation ecosystems to support ongoing invention efforts; and
publishing case studies and research to inform the work of invention educators and policy makers to build support for engaging students in efforts to invent solutions to real-world problems, thus fueling the innovation economy in the U.S.
The Lemelson-MIT Program is a national leader in efforts to prepare the next generation of inventors and entrepreneurs, focusing on the expansion of opportunities for people to learn ways inventors find and solve problems that matter to improve lives. A commitment to diversity, equity, and inclusion aims to remedy historic inequities among those who develop inventions, protect their intellectual property, and commercialize their creations.
Jerome H. Lemelson, one of U.S. history’s most prolific inventors, and his wife Dorothy founded the Lemelson-MIT Program in 1994. It is funded by The Lemelson Foundation and administered by the MIT School of Engineering. For more information, contact Leigh Estabrooks.
As educators are challenged to balance student learning and well-being with planning authentic and relevant course materials, MIT pK-12 at Open Learning developed a framework that can help. The student-centered STEAM learning architecture, initially co-created for Itz’at STEAM Academy in Belize, now serves as a model for schools worldwide.Three core pillars guide MIT pK-12’s vision for teaching and learning: social-emotional and cultural learning, transdisciplinary academics, and community engag
As educators are challenged to balance student learning and well-being with planning authentic and relevant course materials, MIT pK-12 at Open Learning developed a framework that can help. The student-centered STEAM learning architecture, initially co-created for Itz’at STEAM Academy in Belize, now serves as a model for schools worldwide.
Three core pillars guide MIT pK-12’s vision for teaching and learning: social-emotional and cultural learning, transdisciplinary academics, and community engagement. Claudia Urrea, principal investigator for this project and senior associate director of MIT pK-12, says this innovative framework supports learners’ growth as engaged and self-directed students. Joining these efforts on the pK-12 team are Joe Diaz, program coordinator, and Emily Glass, senior learning innovation designer.
Now that Itz’at has completed its first academic year, the MIT pK-12 team reflects on how the STEAM learning architecture works in practice and how it could be adapted to other schools.
Q: Why would a new school need a STEAM learning architecture? How is this framework used?
Glass: In the case of Itz’at STEAM Academy, the school aims to prepare its students for careers and jobs of the future, recognizing that learners will be navigating an evolving global economy with significant technological changes. Since the local and global landscape will continue to evolve over time, in order to stay innovative, the STEAM learning architecture serves as a reference document for the school to reflect, iterate, and improve its program. Learners will need to think critically, solve large problems, embrace creativity, and utilize digital technologies and tools to their benefit.
Q: How do you begin developing a school from scratch?
Urrea: To build a school that reflected local values and aspired towards global goals, our team knew we needed a deep understanding of the strengths and needs of Belize’s larger education ecosystem and culture. We collaborated with Belize's Ministry of Education, Culture, Science, and Technology, as well as the newly hired Itz’at staff.
Next, we conducted an extensive review of research, drawing from MIT pK-12’s own work and outside academic studies on competency-based education, constructionism, and other foundational pedagogies. We gathered best practices of innovative schools through interviews and global site visits.
MIT’s collective team experience included the creation of schools for the NuVuX network, constructionist pedagogical research and practice, and the development of STEAM-focused educational materials for both formal and informal learning environments.
Q: Why was co-creation important for this process?
Urrea: MIT pK-12 could not imagine doing this project without strong co-creation. Everyone involved has their own expertise and understanding of what works best for learners and educators, and collaborating ensures that all stakeholders have a voice in the school’s pedagogy. We co-designed an innovative framework that’s relevant to Belize.
However, there’s no one-size-fits-all pedagogy that will be successful in every context. This framework allows educators to adapt their approaches. The school and the ministry can sustain Itz’at’s experimental nature with continual reflection, iteration, and improvement.
Q: What was the reasoning behind the framework’s core pillars?
Glass: MIT pK-12 found that many successful schools had strong social-emotional support, specific approaches to academics, and reciprocal relationships with their surrounding communities.
We tailored each core pillar to Itz’at. To better support learners’ social-emotional well-being, Belizean cultural identity is an essential part of the learning needed to anchor this project locally. A transdisciplinary approach most clearly aligns with the school’s focus on the United Nations Sustainable Development Goals, encouraging learners to ask big questions facing the world today. And to engage learners in real-world learning experiences, the school coordinates internships with the local community.
Q: Which areas of learning science research were most significant to the STEAM architecture? How does this pedagogy differ from Itz’at educators’ previous experiences?
Urrea: Learning at the Itz'at STEAM Academy focuses on authentic learning experiences and concrete evidence of concept mastery. Educators say that this is different from other schools in Belize, where conventional grading is based on rote memorization in isolated academic subjects.
Together as a team, Itz’at educators shifted their teaching to follow the foundational principles from the STEAM learning architecture, both bringing in their own experiences and implementing new practices.
Glass: Itz’at’s competency-based approach promotes a more holistic educational experience. Instead of traditional subjects like science, history, math, and language arts, Itz’at classes cover sustainable environments, global humanities, qualitative reasoning, arts and fabrication, healthy living, and real-world learning. Combining disciplines in multiple ways allows learners to draw stronger connections between different subjects.
Diaz: When the curriculum is relevant to learners’ lives, learners can also more easily connect what happens inside and outside of the classroom. Itz’at educators embraced bringing in experts from the local community to enrich learning experiences.
Q: How does the curriculum support learners with career preparation?
Diaz: To ensure learners can transition smoothly from school to the workforce, Itz’at offers exposure to potential careers early in their journey. Internships with local businesses, community organizations, and government agencies provide learners with real-world experience in professional environments.
Students begin preparing for internships in their second year and attend seminars in their third year. By their fourth and final year, they are expected to begin internships and capstone projects that demonstrate academic rigor, innovative thinking, and mastery of concepts, topics, and skills of their choosing.
Q: What do you hope the impact of the STEAM architecture will be?
Glass: Our hope is that the STEAM learning architecture will serve as a resource for educators, school administrators, policymakers, and researchers beyond Belize. This framework can help educational practitioners respond to critical challenges, including preparation for life and careers, thinking beyond short-term outcomes, learners’ mental health and well-being, and more.
At the turn of the 20th century, W.E.B. Du Bois wrote about the conditions and culture of Black people in Philadelphia, documenting also the racist attitudes and beliefs that pervaded the white society around them. He described how unequal outcomes in domains like health could be attributed not only to racist ideas, but to racism embedded in American institutions.Almost 125 years later, the concept of “systemic racism” is central to the study of race. Centuries of data collection and analysis, l
At the turn of the 20th century, W.E.B. Du Bois wrote about the conditions and culture of Black people in Philadelphia, documenting also the racist attitudes and beliefs that pervaded the white society around them. He described how unequal outcomes in domains like health could be attributed not only to racist ideas, but to racism embedded in American institutions.
Almost 125 years later, the concept of “systemic racism” is central to the study of race. Centuries of data collection and analysis, like the work of Du Bois, document the mechanisms of racial inequity in law and institutions, and attempt to measure their impact.
“There’s extensive research showing racial discrimination and systemic inequity in essentially all sectors of American society,” explains Fotini Christia, the Ford International Professor of Social Sciences in the Department of Political Science, who directs the MIT Institute for Data, Systems, and Society (IDSS), where she also co-leads the Initiative on Combatting Systemic Racism (ICSR). “Newer research demonstrates how computational technologies, typically trained or reliant on historical data, can further entrench racial bias. But these same tools can also help to identify racially inequitable outcomes, to understand their causes and impacts, and even contribute to proposing solutions.”
In addition to coordinating research on systemic racism across campus, the IDSS initiative has a new project aiming to empower and support this research beyond MIT: the new ICSR Data Hub, which serves as an evolving, public web depository of datasets gathered by ICSR researchers.
Data for justice
“My main project with ICSR involved using Amazon Web Services to build the data hub for other researchers to use in their own criminal justice related projects,” says Ben Lewis SM ’24, a recent alumnus of the MIT Technology and Policy Program (TPP) and current doctoral student at the MIT Sloan School of Management. “We want the data hub to be a centralized place where researchers can access this information via a simple web or Python interface.”
While earning his master’s degree at TPP, Lewis focused his research on race, drug policy, and policing in the United States, exploring drug decriminalization policies’ impact on rates of incarceration and overdose. He worked as a member of the ICSR Policing team, a group of researchers across MIT examining the roles data plays in the design of policing policies and procedures, and how data can highlight or exacerbate racial bias.
“The Policing vertical started with a really challenging fundamental question,” says team lead and electrical engineering and computer science (EECS) Professor Devavrat Shah. “Can we use data to better understand the role that race plays in the different decisions made throughout the criminal justice system?”
So far, the data hub offers 911 dispatch information and police stop data, gathered from 40 of the largest cities in the United States by ICSR researchers. Lewis hopes to see the effort expand to include not only other cities, but other relevant and typically siloed information, like sentencing data.
“We want to stitch the datasets together so that we have a more comprehensive and holistic view of law enforcement systems,” explains Jessy Xinyi Han, a fellow ICSR researcher and graduate student in the IDSS Social and Engineering Systems (SES) doctoral program. Statistical methods like causal inference can help to uncover root causes behind inequalities, says Han — to “untangle a web of possibilities” and better understand the causal effect of race at different stages of the criminal justice process.
“My motivation behind doing this project is personal,” says Lewis, who was drawn to MIT in large part by the opportunity to research systemic racism. As a TPP student, he also founded the Cambridge branch of End Overdose, a nonprofit dedicated to stopping drug overdose deaths. His advocacy led to training hundreds in lifesaving drug interventions, and earned him the 2024 Collier Medal, an MIT distinction for community service honoring Sean Collier, who gave his life serving as an officer with the MIT Police.
“I’ve had family members in incarceration. I’ve seen the impact it has had on my family, and on my community, and realized that over-policing and incarceration are a Band-Aid on issues like poverty and drug use that can trap people in a cycle of poverty.”
Education and impact
Now that the infrastructure for the data hub has been built, and the ICSR Policing team has begun sharing datasets, the next step is for other ICSR teams to start sharing data as well. The cross-disciplinary systemic racism research initiative includes teams working in domains including housing, health care, and social media.
“We want to take advantage of the abundance of data that is available today to answer difficult questions about how racism results from the interactions of multiple systems,” says Munther Dahleh, EECS professor, IDSS founding director, and ICSR co-lead. “Our interest is in how various institutions perpetuate racism, and how technology can exacerbate or combat this.”
To the data hub creators, the main sign of success for the project is seeing the data used in research projects at and beyond MIT. As a resource, though, the hub can support that research for users from a range of experience and backgrounds.
“The data hub is also about education and empowerment,” says Han. “This information can be used in projects designed to teach users how to use big data, how to do data analysis, and even to learn machine learning tools, all specifically to uncover racial disparities in data.”
“Championing the propagation of data skills has been part of the IDSS mission since Day 1,” says Dahleh. “We are excited by the opportunities that making this data available can present in educational contexts, including but not limited to our growing IDSSx suite of online course offerings.”
This emphasis on educational potential only augments the ambitions of ICSR researchers across MIT, who aspire to use data and computing tools to produce actionable insights for policymakers that can lead to real change.
“Systemic racism is an abundantly evidenced societal challenge with far-reaching impacts across domains,” says Christia. “At IDSS, we want to ensure that developing technologies, combined with access to ever-increasing amounts of data, are leveraged to combat racist outcomes rather than continue to enact them.”
As educators are challenged to balance student learning and well-being with planning authentic and relevant course materials, MIT pK-12 at Open Learning developed a framework that can help. The student-centered STEAM learning architecture, initially co-created for Itz’at STEAM Academy in Belize, now serves as a model for schools worldwide.Three core pillars guide MIT pK-12’s vision for teaching and learning: social-emotional and cultural learning, transdisciplinary academics, and community engag
As educators are challenged to balance student learning and well-being with planning authentic and relevant course materials, MIT pK-12 at Open Learning developed a framework that can help. The student-centered STEAM learning architecture, initially co-created for Itz’at STEAM Academy in Belize, now serves as a model for schools worldwide.
Three core pillars guide MIT pK-12’s vision for teaching and learning: social-emotional and cultural learning, transdisciplinary academics, and community engagement. Claudia Urrea, principal investigator for this project and senior associate director of MIT pK-12, says this innovative framework supports learners’ growth as engaged and self-directed students. Joining these efforts on the pK-12 team are Joe Diaz, program coordinator, and Emily Glass, senior learning innovation designer.
Now that Itz’at has completed its first academic year, the MIT pK-12 team reflects on how the STEAM learning architecture works in practice and how it could be adapted to other schools.
Q: Why would a new school need a STEAM learning architecture? How is this framework used?
Glass: In the case of Itz’at STEAM Academy, the school aims to prepare its students for careers and jobs of the future, recognizing that learners will be navigating an evolving global economy with significant technological changes. Since the local and global landscape will continue to evolve over time, in order to stay innovative, the STEAM learning architecture serves as a reference document for the school to reflect, iterate, and improve its program. Learners will need to think critically, solve large problems, embrace creativity, and utilize digital technologies and tools to their benefit.
Q: How do you begin developing a school from scratch?
Urrea: To build a school that reflected local values and aspired towards global goals, our team knew we needed a deep understanding of the strengths and needs of Belize’s larger education ecosystem and culture. We collaborated with Belize's Ministry of Education, Culture, Science, and Technology, as well as the newly hired Itz’at staff.
Next, we conducted an extensive review of research, drawing from MIT pK-12’s own work and outside academic studies on competency-based education, constructionism, and other foundational pedagogies. We gathered best practices of innovative schools through interviews and global site visits.
MIT’s collective team experience included the creation of schools for the NuVuX network, constructionist pedagogical research and practice, and the development of STEAM-focused educational materials for both formal and informal learning environments.
Q: Why was co-creation important for this process?
Urrea: MIT pK-12 could not imagine doing this project without strong co-creation. Everyone involved has their own expertise and understanding of what works best for learners and educators, and collaborating ensures that all stakeholders have a voice in the school’s pedagogy. We co-designed an innovative framework that’s relevant to Belize.
However, there’s no one-size-fits-all pedagogy that will be successful in every context. This framework allows educators to adapt their approaches. The school and the ministry can sustain Itz’at’s experimental nature with continual reflection, iteration, and improvement.
Q: What was the reasoning behind the framework’s core pillars?
Glass: MIT pK-12 found that many successful schools had strong social-emotional support, specific approaches to academics, and reciprocal relationships with their surrounding communities.
We tailored each core pillar to Itz’at. To better support learners’ social-emotional well-being, Belizean cultural identity is an essential part of the learning needed to anchor this project locally. A transdisciplinary approach most clearly aligns with the school’s focus on the United Nations Sustainable Development Goals, encouraging learners to ask big questions facing the world today. And to engage learners in real-world learning experiences, the school coordinates internships with the local community.
Q: Which areas of learning science research were most significant to the STEAM architecture? How does this pedagogy differ from Itz’at educators’ previous experiences?
Urrea: Learning at the Itz'at STEAM Academy focuses on authentic learning experiences and concrete evidence of concept mastery. Educators say that this is different from other schools in Belize, where conventional grading is based on rote memorization in isolated academic subjects.
Together as a team, Itz’at educators shifted their teaching to follow the foundational principles from the STEAM learning architecture, both bringing in their own experiences and implementing new practices.
Glass: Itz’at’s competency-based approach promotes a more holistic educational experience. Instead of traditional subjects like science, history, math, and language arts, Itz’at classes cover sustainable environments, global humanities, qualitative reasoning, arts and fabrication, healthy living, and real-world learning. Combining disciplines in multiple ways allows learners to draw stronger connections between different subjects.
Diaz: When the curriculum is relevant to learners’ lives, learners can also more easily connect what happens inside and outside of the classroom. Itz’at educators embraced bringing in experts from the local community to enrich learning experiences.
Q: How does the curriculum support learners with career preparation?
Diaz: To ensure learners can transition smoothly from school to the workforce, Itz’at offers exposure to potential careers early in their journey. Internships with local businesses, community organizations, and government agencies provide learners with real-world experience in professional environments.
Students begin preparing for internships in their second year and attend seminars in their third year. By their fourth and final year, they are expected to begin internships and capstone projects that demonstrate academic rigor, innovative thinking, and mastery of concepts, topics, and skills of their choosing.
Q: What do you hope the impact of the STEAM architecture will be?
Glass: Our hope is that the STEAM learning architecture will serve as a resource for educators, school administrators, policymakers, and researchers beyond Belize. This framework can help educational practitioners respond to critical challenges, including preparation for life and careers, thinking beyond short-term outcomes, learners’ mental health and well-being, and more.
Bridging Talents and Opportunities (BTO) held its second annual forum at the Stratton Student Center at MIT Oct. 11-12. The two-day event gathered over 500 participants, including high school students and their families, undergraduate students, professors, and leaders across STEAM (science, technology, engineering, arts, and mathematics) fields.The forum sought to empower talented students from across the United States and Latin America to dream big and pursue higher education, demonstrating tha
Bridging Talents and Opportunities (BTO) held its second annual forum at the Stratton Student Center at MIT Oct. 11-12. The two-day event gathered over 500 participants, including high school students and their families, undergraduate students, professors, and leaders across STEAM (science, technology, engineering, arts, and mathematics) fields.
The forum sought to empower talented students from across the United States and Latin America to dream big and pursue higher education, demonstrating that access to prestigious institutions like MIT is possible regardless of socioeconomic barriers. The event featured inspirational talks from world-renowned scientists, innovators, entrepreneurs, social leaders, and major figures in entertainment — from Nobel laureate Rigoberta Menchú Tum to musician and producer Emilio Estefan, and more.
“Our initiative is committed to building meaningful connections among talented young individuals, their families, foundations, and leaders in science, art, mathematics, and technology,” says Ronald Garcia Ruiz, the Thomas A. Frank Career Development Assistant Professor of Physics at MIT and an organizer of the forum. “Recognizing that talent is universal but opportunities are often confined to select sectors of society, we are dedicated to bridging this gap. BTO provides a platform for sharing inspiring stories and offering support to promising young talents, empowering them to seize the diverse opportunities that await them.”
During their talks and panel discussions, speakers shared their insight into topics such as access to STEAM education, overcoming challenges and socioeconomic barriers, and strategies for fostering inclusion in STEAM fields. Students also had the opportunity to network with industry leaders and professionals, building connections to foster future collaborations.
Attendees also participated in hands-on scientific demonstrations, interaction with robots, and tours of MIT labs, providing a view of cutting-edge scientific research. The event also included musical performances from Latin American students from Berklee College of Music.
“I was thrilled to see the enthusiasm of young people and their parents and to be inspired by the great life stories of accomplished scientists and individuals from other fields making a positive impact in the real world,” says Edwin Pedrozo Peñafiel, assistant professor of physics at the University of Florida and an organizer. “This is why I strongly believe that representation matters.”
Welcoming a Nobel laureate
The first day of the forum opened with the welcoming words from Nergis Mavalvala, dean of the School of Science, and Boleslaw Wyslouch, director of the Laboratory for Nuclear Science and the MIT Bates Research and Engineering Center, and concluded with a keynote address by human rights activist Rigoberta Menchú Tum, 1992 Nobel Peace laureate and founder of the Rigoberta Menchú Tum Foundation. Reflecting upon Indigenous perspectives on science, she emphasized the importance of maintaining a humanistic perspective in scientific discovery. “My struggle has been one of constructing a humanistic perspective … that science, technology … are products of the strength of human beings,” Menchú remarked. She also shared her extraordinary story, encouraging students to persevere no matter the obstacles.
Diana Grass, a PhD Student in the Harvard-MIT Health Sciences and Technology program and organizer, shares, “As a woman in science and a first-generation student, I’ve experienced firsthand the impact of breaking barriers and the importance of representation. At Bridging Talents and Opportunities (BTO), we are shaping a future where opportunities are available to all. Seeing students from disadvantaged backgrounds, along with their parents, engage with some of today’s most influential scientists and leaders — who shared their own stories of resilience — was both inspiring and transformative. It ignited crucial conversations about how interdisciplinary collaboration in STEAM, grounded in humanity, is essential for tackling the critical challenges of our era.”
Power of the Arts
The second day concluded with a panel on “The Power of the Arts,” featuring actor, singer, and songwriter Carlos Ponce, as well as musician and producer Emilio Estefan. They were joined by journalist and author Luz María Doria, who moderated the discussion. Throughout the panel, the speakers recounted their inspiring journeys toward success in the entertainment industry. “This forum reaffirmed our commitment to bridging talent with opportunity,” says Ponce. “The energy and engagement from students, families, and speakers were incredible, fostering a space of learning, empowerment, and possibility.”
During the forum, a two-hour workshop was held that brought together scientists, nonprofit foundations, and business leaders to discuss concrete proposals for creating opportunities for young talents. In this workshop, they had the opportunity to share their ideas with one another. Key ideas and final takeaways from the workshop included developing strategic programs to match talented young students with mentors from diverse backgrounds who can serve as role models, better utilization of existing programs supporting underserved populations, dissemination of information about such programs, ideas to improve financial support for students pursuing education, and fostering extended collaborations between the three groups involved in the workshop.
Maria Angélica Cuellar, CEO of Incontact Group and a BTO organizer, says, “The event was absolutely spectacular and exceeded our expectations. We not only brought together leaders making a global impact in STEAM and business, but also secured financial commitments to support young talents. Through media coverage and streaming, our message reached every corner of the world, especially Latin America and the U.S. I’m deeply grateful for the commitment of each speaker and for the path now open to turn this dream of connecting stakeholders into tangible results and actions. An exciting challenge lies ahead, driving us to work even harder to create opportunities for these talented young people.”
“Bridging Talents and Opportunities was a unique event that brought together students, parents, professors, and leaders in different fields in a relatable and inspiring environment,” says Sebastián Ruiz Lopera, a PhD candidate in the Department of Electrical Engineering and Computer Science and an organizer. “Every speaker, panelist, and participant shared a story of resilience and passion that will motivate the next generation of young talents from disadvantaged backgrounds to become the new leaders and stakeholders.”
The 2024 BTO forum was made possible with the support of the Latinx Graduate Student Association at MIT, Laboratory of Nuclear Science, MIT MLK Scholars Program, Institute Community and Equity Office, the School of Science, the U.S. Department of Energy, University of Florida, CHN, JGMA Architects, Berklee College of Music, and the Harvard Colombian Student Society.
At the turn of the 20th century, W.E.B. Du Bois wrote about the conditions and culture of Black people in Philadelphia, documenting also the racist attitudes and beliefs that pervaded the white society around them. He described how unequal outcomes in domains like health could be attributed not only to racist ideas, but to racism embedded in American institutions.Almost 125 years later, the concept of “systemic racism” is central to the study of race. Centuries of data collection and analysis, l
At the turn of the 20th century, W.E.B. Du Bois wrote about the conditions and culture of Black people in Philadelphia, documenting also the racist attitudes and beliefs that pervaded the white society around them. He described how unequal outcomes in domains like health could be attributed not only to racist ideas, but to racism embedded in American institutions.
Almost 125 years later, the concept of “systemic racism” is central to the study of race. Centuries of data collection and analysis, like the work of Du Bois, document the mechanisms of racial inequity in law and institutions, and attempt to measure their impact.
“There’s extensive research showing racial discrimination and systemic inequity in essentially all sectors of American society,” explains Fotini Christia, the Ford International Professor of Social Sciences in the Department of Political Science, who directs the MIT Institute for Data, Systems, and Society (IDSS), where she also co-leads the Initiative on Combatting Systemic Racism (ICSR). “Newer research demonstrates how computational technologies, typically trained or reliant on historical data, can further entrench racial bias. But these same tools can also help to identify racially inequitable outcomes, to understand their causes and impacts, and even contribute to proposing solutions.”
In addition to coordinating research on systemic racism across campus, the IDSS initiative has a new project aiming to empower and support this research beyond MIT: the new ICSR Data Hub, which serves as an evolving, public web depository of datasets gathered by ICSR researchers.
Data for justice
“My main project with ICSR involved using Amazon Web Services to build the data hub for other researchers to use in their own criminal justice related projects,” says Ben Lewis SM ’24, a recent alumnus of the MIT Technology and Policy Program (TPP) and current doctoral student at the MIT Sloan School of Management. “We want the data hub to be a centralized place where researchers can access this information via a simple web or Python interface.”
While earning his master’s degree at TPP, Lewis focused his research on race, drug policy, and policing in the United States, exploring drug decriminalization policies’ impact on rates of incarceration and overdose. He worked as a member of the ICSR Policing team, a group of researchers across MIT examining the roles data plays in the design of policing policies and procedures, and how data can highlight or exacerbate racial bias.
“The Policing vertical started with a really challenging fundamental question,” says team lead and electrical engineering and computer science (EECS) Professor Devavrat Shah. “Can we use data to better understand the role that race plays in the different decisions made throughout the criminal justice system?”
So far, the data hub offers 911 dispatch information and police stop data, gathered from 40 of the largest cities in the United States by ICSR researchers. Lewis hopes to see the effort expand to include not only other cities, but other relevant and typically siloed information, like sentencing data.
“We want to stitch the datasets together so that we have a more comprehensive and holistic view of law enforcement systems,” explains Jessy Xinyi Han, a fellow ICSR researcher and graduate student in the IDSS Social and Engineering Systems (SES) doctoral program. Statistical methods like causal inference can help to uncover root causes behind inequalities, says Han — to “untangle a web of possibilities” and better understand the causal effect of race at different stages of the criminal justice process.
“My motivation behind doing this project is personal,” says Lewis, who was drawn to MIT in large part by the opportunity to research systemic racism. As a TPP student, he also founded the Cambridge branch of End Overdose, a nonprofit dedicated to stopping drug overdose deaths. His advocacy led to training hundreds in lifesaving drug interventions, and earned him the 2024 Collier Medal, an MIT distinction for community service honoring Sean Collier, who gave his life serving as an officer with the MIT Police.
“I’ve had family members in incarceration. I’ve seen the impact it has had on my family, and on my community, and realized that over-policing and incarceration are a Band-Aid on issues like poverty and drug use that can trap people in a cycle of poverty.”
Education and impact
Now that the infrastructure for the data hub has been built, and the ICSR Policing team has begun sharing datasets, the next step is for other ICSR teams to start sharing data as well. The cross-disciplinary systemic racism research initiative includes teams working in domains including housing, health care, and social media.
“We want to take advantage of the abundance of data that is available today to answer difficult questions about how racism results from the interactions of multiple systems,” says Munther Dahleh, EECS professor, IDSS founding director, and ICSR co-lead. “Our interest is in how various institutions perpetuate racism, and how technology can exacerbate or combat this.”
To the data hub creators, the main sign of success for the project is seeing the data used in research projects at and beyond MIT. As a resource, though, the hub can support that research for users from a range of experience and backgrounds.
“The data hub is also about education and empowerment,” says Han. “This information can be used in projects designed to teach users how to use big data, how to do data analysis, and even to learn machine learning tools, all specifically to uncover racial disparities in data.”
“Championing the propagation of data skills has been part of the IDSS mission since Day 1,” says Dahleh. “We are excited by the opportunities that making this data available can present in educational contexts, including but not limited to our growing IDSSx suite of online course offerings.”
This emphasis on educational potential only augments the ambitions of ICSR researchers across MIT, who aspire to use data and computing tools to produce actionable insights for policymakers that can lead to real change.
“Systemic racism is an abundantly evidenced societal challenge with far-reaching impacts across domains,” says Christia. “At IDSS, we want to ensure that developing technologies, combined with access to ever-increasing amounts of data, are leveraged to combat racist outcomes rather than continue to enact them.”
Arts & Culture
The problem with knowing everything
Homi Bhabha (left) and William Egginton. Niles Singer/Harvard Staff Photographer
Anne J. Manning
Harvard Staff Writer
November 4, 2024
3 min read
‘Rigor of Angels’ author explains how a Borges character with perfect memory illuminates work of Heisenberg, Kant
The title character of “Funes the Memorious,” a short story by Argentine wr
‘Rigor of Angels’ author explains how a Borges character with perfect memory illuminates work of Heisenberg, Kant
The title character of “Funes the Memorious,” a short story by Argentine writer Jorge Luis Borges, suffers a head injury that renders him incapable of forgetting even the smallest detail. Forced to perceive everything at every moment in sharp relief, Funes grieves the ability to experience the world, as others do, in abstractions.
This story of the “perfect observer” helped author William Egginton better understand German physicist Werner Heisenberg’s principles that helped lay the foundations of quantum mechanics. It also inspired Egginton to write a book exploring the nature of reality and the different ways humans grasp it through the lenses of three great thinkers: Borges, Heisenberg, and Prussian philosopher Immanuel Kant.
Egginton, the Decker Professor of Humanities at Johns Hopkins University and author of several books that cross philosophy and science, called attention to the key theme of epistemic humility, or the idea that there is a fundamental limit to how much we know.
“But we have a tendency to override those limits,” Egginton offered. This is a central idea in Kant’s body of work, known as critical philosophy, and arguably in the literature of Borges and the science of Heisenberg, he said.
The mysteries of quantum mechanics can be summarized, Egginton continued, by the double-slit thought experiment (which later became an actual experiment), in which particles like electrons and photons become wave-like when not being observed, only to revert back to particles when measured. Heisenberg declared that “a particle has no path until we observe it.” Albert Einstein was famously uncomfortable with the notion.
Being perfect in knowledge meant Funes the Memorious could not generalize ideas and experiences, which he experienced as imprisonment — even torture. Egginton likened Funes’ fate to Heisenberg’s uncertainty principle, in which observation of a physical phenomenon automatically constrains our view, putting natural limits on what we can call “reality.”
“We need to remind ourselves that what we’re studying is not nature itself,” Egginton said. “We’re studying nature as it reveals itself to our instruments of knowledge … and this is exactly what Kant was ultimately saying about science, too. It’s not that the world out there doesn’t exist in some kind of radical, solipsistic sense at all. We’re accepting that when you’re trying to do science, you’re doing science about the world as it exists for beings like us.”
Cambridge Institute for Sustainability Leadership's Chief Innovation Officer, James Cole, looks back at what happened at COP16, and asks what comes next in this article.
After two weeks of negotiations last week in Cali, Colombia, the COP16 biodiversity summit was suspended with no overall agreement on a path forward on “resource mobilisation."
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos
Cambridge Institute for Sustainability Leadership's Chief Innovation Officer, James Cole, looks back at what happened at COP16, and asks what comes next in this article.
After two weeks of negotiations last week in Cali, Colombia, the COP16 biodiversity summit was suspended with no overall agreement on a path forward on “resource mobilisation."
Artist and designer Es Devlin is the recipient of the 2025 Eugene McDermott Award in the Arts at MIT. The $100,000 prize, to be awarded at a gala in her honor, also includes an artist residency at MIT in spring 2025, during which Es Devlin will present her work in a lecture open to the public on May 1, 2025. Devlin’s work explores biodiversity, linguistic diversity, and collective AI-generated poetry, all areas that also are being explored within the MIT community. She is known for public art an
Artist and designer Es Devlin is the recipient of the 2025 Eugene McDermott Award in the Arts at MIT. The $100,000 prize, to be awarded at a gala in her honor, also includes an artist residency at MIT in spring 2025, during which Es Devlin will present her work in a lecture open to the public on May 1, 2025.
Devlin’s work explores biodiversity, linguistic diversity, and collective AI-generated poetry, all areas that also are being explored within the MIT community. She is known for public art and installations at major museums such as the Tate Modern, kinetic stage designs for the Metropolitan Opera, the Super Bowl, and the Olympics, as well as monumental stage sculptures for large-scale stadium concerts.
“I am always most energized by works I have not yet made, so I am immensely grateful to have this trust and investment in ideas I’ve yet to conceive,” says Devlin. “I’m honored to receive an award that has been granted to so many of my heroes, and look forward to collaborating closely with the brilliant minds at MIT.”
“We look forward to presenting Es Devlin with MIT’s highest award in the arts. Her work will be an inspiration for our students studying the visual arts, theater, media, and design. Her interest in AI and the arts dovetails with a major initiative at MIT to address the societal impact of GenAI [generative artificial intelligence],” says MIT vice provost and Ford International Professor of History Philip S. Khoury. “With a new performing arts center opening this winter and a campus-wide arts festival taking place this spring, there could not be a better moment to expose MIT’s creative community to Es Devlin’s extraordinary artistic practice.”
The Eugene McDermott Award in the Arts at MIT recognizes innovative artists working in any field or cross-disciplinary activity. The $100,000 prize represents an investment in the recipient’s future creative work, rather than a prize for a particular project or lifetime of achievement. The official announcement was made at the Council for the Arts at MIT’s 51st annual meeting on Oct. 24. Since it was established in 1974, the award has been bestowed upon 38 individuals who work in performing, visual, and media arts, as well as authors, art historians, and patrons of the arts. Past recipients include Santiago Calatrava, Gustavo Dudamel, Olafur Eliasson, Robert Lepage, Audra McDonald, Suzan-Lori Parks, Bill Viola, and Pamela Z, among others.
A distinctive feature of the award is a short residency at MIT, which includes a public presentation of the artist’s work, substantial interaction with students and faculty, and a gala that convenes national and international leaders in the arts. The goal of the residency is to provide the recipient with unparalleled access to the creative energy and cutting-edge research at the Institute and to develop mutually enlightening relationships in the MIT community.
The Eugene McDermott Award in the Arts at MIT was established in 1974 by Margaret McDermott (1912-2018) in honor of her husband, Eugene McDermott (1899-1973), a co-founder of Texas Instruments and longtime friend and benefactor of MIT. The award is presented by the Council for the Arts at MIT.
The award is bestowed upon individuals whose artistic trajectory and body of work have achieved the highest distinction in their field and indicate they will remain leaders for years to come. The McDermott Award reflects MIT’s commitment to risk-taking, problem-solving, and connecting creative minds across disciplines.
Es Devlin, born in London in 1971, views an audience as a temporary society and often invites public participation in communal choral works. Her canvas ranges from public sculptures and installations at Tate Modern, V&A, Serpentine, Imperial War Museum, and Lincoln Center, to kinetic stage designs at the Royal Opera House, the National Theatre, and the Metropolitan Opera, as well as Olympic ceremonies, Super Bowl halftime shows, and monumental illuminated stage sculptures for large-scale stadium concerts.
Devlin is the subject of a major monographic book, “An Atlas of Es Devlin,” described by Thames and Hudson as their most intricate and sculptural publication to date, and a retrospective exhibition at the Cooper Hewitt Smithsonian Design Museum in New York. In 2020, she became the first female architect of the U.K. Pavilion at a World Expo, conceiving a building which used AI to co-author poetry with visitors on its 20-meter diameter facade. Her practice was the subject of the 2015 Netflix documentary series “Abstract: The Art of Design.” She is a fellow of the Royal Academy of Music, University of the Arts London, and a Royal Designer for Industry at the Royal Society of Arts. She has been awarded the London Design Medal, three Olivier Awards, a Tony Award, an Ivor Novello Award, doctorates from the Universities of Bristol and Kent, and a Commander of the Order of the British Empire award.
Cornell researchers have found that in social VR settings, the decision to disclose an invisible disability – a physical, mental or neurological condition that’s not apparent but can limit a person’s movements, senses or activities – is personal.
Cornell researchers have found that in social VR settings, the decision to disclose an invisible disability – a physical, mental or neurological condition that’s not apparent but can limit a person’s movements, senses or activities – is personal.
CNA, 24 October 2024Channel 5 News, 24 October 20248world Online, 24 October 2024Suria News Online, 24 October 2024CNA938, 24 October 2024Lianhe Zaobao, 25 October 2024, Singapore, p11
CNA, 24 October 2024Suria News Online, 24 October 2024The New Paper, 24 October 2024The Straits Times, 25 October 2024, Life, pC6Lianhe Zaobao, 25 October 2024, Singapore, p12Berita Harian, 25 October 2024, p2
Silicon transistors, which are used to amplify and switch signals, are a critical component in most electronic devices, from smartphones to automobiles. But silicon semiconductor technology is held back by a fundamental physical limit that prevents transistors from operating below a certain voltage.This limit, known as “Boltzmann tyranny,” hinders the energy efficiency of computers and other electronics, especially with the rapid development of artificial intelligence technologies that demand fa
Silicon transistors, which are used to amplify and switch signals, are a critical component in most electronic devices, from smartphones to automobiles. But silicon semiconductor technology is held back by a fundamental physical limit that prevents transistors from operating below a certain voltage.
This limit, known as “Boltzmann tyranny,” hinders the energy efficiency of computers and other electronics, especially with the rapid development of artificial intelligence technologies that demand faster computation.
In an effort to overcome this fundamental limit of silicon, MIT researchers fabricated a different type of three-dimensional transistor using a unique set of ultrathin semiconductor materials.
Their devices, featuring vertical nanowires only a few nanometers wide, can deliver performance comparable to state-of-the-art silicon transistors while operating efficiently at much lower voltages than conventional devices.
“This is a technology with the potential to replace silicon, so you could use it with all the functions that silicon currently has, but with much better energy efficiency,” says Yanjie Shao, an MIT postdoc and lead author of a paper on the new transistors.
The transistors leverage quantum mechanical properties to simultaneously achieve low-voltage operation and high performance within an area of just a few square nanometers. Their extremely small size would enable more of these 3D transistors to be packed onto a computer chip, resulting in fast, powerful electronics that are also more energy-efficient.
“With conventional physics, there is only so far you can go. The work of Yanjie shows that we can do better than that, but we have to use different physics. There are many challenges yet to be overcome for this approach to be commercial in the future, but conceptually, it really is a breakthrough,” says senior author Jesús del Alamo, the Donner Professor of Engineering in the MIT Department of Electrical Engineering and Computer Science (EECS).
They are joined on the paper by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering at MIT; EECS graduate student Hao Tang; MIT postdoc Baoming Wang; and professors Marco Pala and David Esseni of the University of Udine in Italy. The research appears today in Nature Electronics.
Surpassing silicon
In electronic devices, silicon transistors often operate as switches. Applying a voltage to the transistor causes electrons to move over an energy barrier from one side to the other, switching the transistor from “off” to “on.” By switching, transistors represent binary digits to perform computation.
A transistor’s switching slope reflects the sharpness of the “off” to “on” transition. The steeper the slope, the less voltage is needed to turn on the transistor and the greater its energy efficiency.
But because of how electrons move across an energy barrier, Boltzmann tyranny requires a certain minimum voltage to switch the transistor at room temperature.
To overcome the physical limit of silicon, the MIT researchers used a different set of semiconductor materials — gallium antimonide and indium arsenide — and designed their devices to leverage a unique phenomenon in quantum mechanics called quantum tunneling.
Quantum tunneling is the ability of electrons to penetrate barriers. The researchers fabricated tunneling transistors, which leverage this property to encourage electrons to push through the energy barrier rather than going over it.
“Now, you can turn the device on and off very easily,” Shao says.
But while tunneling transistors can enable sharp switching slopes, they typically operate with low current, which hampers the performance of an electronic device. Higher current is necessary to create powerful transistor switches for demanding applications.
Fine-grained fabrication
Using tools at MIT.nano, MIT’s state-of-the-art facility for nanoscale research, the engineers were able to carefully control the 3D geometry of their transistors, creating vertical nanowire heterostructures with a diameter of only 6 nanometers. They believe these are the smallest 3D transistors reported to date.
Such precise engineering enabled them to achieve a sharp switching slope and high current simultaneously. This is possible because of a phenomenon called quantum confinement.
Quantum confinement occurs when an electron is confined to a space that is so small that it can’t move around. When this happens, the effective mass of the electron and the properties of the material change, enabling stronger tunneling of the electron through a barrier.
Because the transistors are so small, the researchers can engineer a very strong quantum confinement effect while also fabricating an extremely thin barrier.
“We have a lot of flexibility to design these material heterostructures so we can achieve a very thin tunneling barrier, which enables us to get very high current,” Shao says.
Precisely fabricating devices that were small enough to accomplish this was a major challenge.
“We are really into single-nanometer dimensions with this work. Very few groups in the world can make good transistors in that range. Yanjie is extraordinarily capable to craft such well-functioning transistors that are so extremely small,” says del Alamo.
When the researchers tested their devices, the sharpness of the switching slope was below the fundamental limit that can be achieved with conventional silicon transistors. Their devices also performed about 20 times better than similar tunneling transistors.
“This is the first time we have been able to achieve such sharp switching steepness with this design,” Shao adds.
The researchers are now striving to enhance their fabrication methods to make transistors more uniform across an entire chip. With such small devices, even a 1-nanometer variance can change the behavior of the electrons and affect device operation. They are also exploring vertical fin-shaped structures, in addition to vertical nanowire transistors, which could potentially improve the uniformity of devices on a chip.
“This work definitively steps in the right direction, significantly improving the broken-gap tunnel field effect transistor (TFET) performance. It demonstrates steep-slope together with a record drive-current. It highlights the importance of small dimensions, extreme confinement, and low-defectivity materials and interfaces in the fabricated broken-gap TFET. These features have been realized through a well-mastered and nanometer-size-controlled process,” says Aryan Afzalian, a principal member of the technical staff at the nanoelectronics research organization imec, who was not involved with this work.
This research is funded, in part, by Intel Corporation.
An ETH Zurich team of engineers has developed RoBoa – a snake-like robot with the ability to grow in length and slither into the most inaccessible places.
An ETH Zurich team of engineers has developed RoBoa – a snake-like robot with the ability to grow in length and slither into the most inaccessible places.
A recent survey found that nearly 40 per cent of respondents in Singapore have pre-diabetes, a condition that increases the risk of developing Type 2 Diabetes (T2D). Pre-diabetes occurs when blood sugar levels are elevated, but not high enough to be diagnosed with diabetes, serving as a crucial early warning[1].Without lifestyle changes, at least 35 per cent of persons with pre-diabetes in Singapore will progress to T2D over eight years. In the survey, respondents with pre-diabetes were signific
A recent survey found that nearly 40 per cent of respondents in Singapore have pre-diabetes, a condition that increases the risk of developing Type 2 Diabetes (T2D). Pre-diabetes occurs when blood sugar levels are elevated, but not high enough to be diagnosed with diabetes, serving as a crucial early warning[1].
Without lifestyle changes, at least 35 per cent of persons with pre-diabetes in Singapore will progress to T2D over eight years. In the survey, respondents with pre-diabetes were significantly older, more likely to be male, and had higher body mass index (BMI) than those without diabetes.
These were the findings from a partnership study between the NUS Lloyd’s Register Foundation Institute for the Public Understanding of Risk (IPUR) and Diabetes Singapore which were published in the “Diabetes Perception” report that was launched today.
The survey was carried out at different health screening events between June and October 2024 which saw almost 1,000 participants responding to the survey. It sought to, among other objectives, understand public perceptions and assess awareness levels of diabetes in Singapore, as well as to engage healthcare providers, policymakers, individuals with diabetes and the wider community in dialogue on improving diabetes care and management.
Many individuals unaware of their diabetes status
When asked if they had diabetes, almost half of the respondents who believed they had no diabetes were found to have either pre-diabetes (41.6 per cent) or diabetes (5.9 per cent). Among those unsure about their diabetes status, more than half had abnormal blood sugar levels; nearly 40 per cent had pre-diabetes, and over 10 per cent had diabetes.
More concerningly, fewer than half of those who actually had diabetes (64 out of 137 of surveyed participants) were aware of their condition. Among those with pre-diabetes, nearly 70 per cent believed they did not have diabetes. These findings reflect a worrying gap between people’s perceptions and their actual health condition.
Professor Leonard Lee, Director of IPUR, said, “The findings of the study highlight existing gaps in awareness and knowledge, and underscore the importance of going for regular health screenings. We see that many people are unaware of their blood glucose levels and therefore do not take any action or make lifestyle changes to manage their health. This is especially important for people with pre-diabetes who are more at risk of getting diabetes.”
Mr Satyaprakash Tiwari, Director of Diabetes Singapore, commented, “The partnership between Diabetes Singapore and IPUR has given us valuable information on the greatest needs of local communities regarding diabetes mitigation. The study has demonstrated that prevention should come before reaction – people need to go for regular screenings in order to better care for their health and reduce their vulnerability to diabetes.”
To further this partnership, IPUR and Diabetes SG plan to collaborate on developing and testing interventions and risk communication strategies aimed at improving diabetes management in Singapore. This new initiative will build on prior research led by IPUR which suggests that cultivating a growth mindset may foster greater motivation for better care and treatment of this chronic disease.
The full Diabetes Perception report can be found here.
[1] Haemoglobin A1c (HbA1c) testing, used in the survey, measures a person’s average blood sugar over the past two to three months. Results between 5.7 per cent and 6.4 per cent indicate pre-diabetes, while a level below 5.7 per cent is normal, and 6.5 per cent or higher classifies a person as having diabetes.
Like humans and other complex multicellular organisms, single-celled bacteria can fall ill and fight off viral infections. A bacterial virus is caused by a bacteriophage, or, more simply, phage, which is one of the most ubiquitous life forms on earth. Phages and bacteria are engaged in a constant battle, the virus attempting to circumvent the bacteria’s defenses, and the bacteria racing to find new ways to protect itself.These anti-phage defense systems are carefully controlled, and prudently ma
Like humans and other complex multicellular organisms, single-celled bacteria can fall ill and fight off viral infections. A bacterial virus is caused by a bacteriophage, or, more simply, phage, which is one of the most ubiquitous life forms on earth. Phages and bacteria are engaged in a constant battle, the virus attempting to circumvent the bacteria’s defenses, and the bacteria racing to find new ways to protect itself.
These anti-phage defense systems are carefully controlled, and prudently managed — dormant, but always poised to strike.
New open-access research recently published in Nature from the Laub Lab in the Department of Biology at MIT has characterized an anti-phage defense system in bacteria, CmdTAC. CmdTAC prevents viral infection by altering the single-stranded genetic code used to produce proteins, messenger RNA.
This defense system detects phage infection at a stage when the viral phage has already commandeered the host’s machinery for its own purposes. In the face of annihilation, the ill-fated bacterium activates a defense system that will halt translation, preventing the creation of new proteins and aborting the infection — but dooming itself in the process.
“When bacteria are in a group, they’re kind of like a multicellular organism that is not connected to one another. It’s an evolutionarily beneficial strategy for one cell to kill itself to save another identical cell,” says Christopher Vassallo, a postdoc and co-author of the study. “You could say it’s like self-sacrifice: One cell dies to protect the other cells.”
The enzyme responsible for altering the mRNA is called an ADP-ribosyltransferase. Researchers have characterized hundreds of these enzymes — although a few are known to target DNA or RNA, all but a handful target proteins. This is the first time these enzymes have been characterized targeting mRNA within cells.
Expanding understanding of anti-phage defense
Co-first author and graduate student Christopher Doering notes that it is only within the last decade or so that researchers have begun to appreciate the breadth of diversity and complexity of anti-phage defense systems. For example, CRISPR gene editing, a technique used in everything from medicine to agriculture, is rooted in research on the bacterial CRISPR-Cas9 anti-phage defense system.
CmdTAC is a subset of a widespread anti-phage defense mechanism called a toxin-antitoxin system. A TA system is just that: a toxin capable of killing or altering the cell’s processes rendered inert by an associated antitoxin.
Although these TA systems can be identified — if the toxin is expressed by itself, it kills or inhibits the growth of the cell; if the toxin and antitoxin are expressed together, the toxin is neutralized — characterizing the cascade of circumstances that activates these systems requires extensive effort. In recent years, however, many TA systems have been shown to serve as anti-phage defense.
Two general questions need to be answered to understand a viral defense system: How do bacteria detect an infection, and how do they respond?
Detecting infection
CmdTAC is a TA system with an additional element, and the three components generally exist in a stable complex: the toxic CmdT, the antitoxin CmdA, and an additional component called a chaperone, CmdC.
If the phage’s protective capsid protein is present, CmdC disassociates from CmdT and CmdA and interacts with the phage capsid protein instead. In the model outlined in the paper, the chaperone CmdC is, therefore, the sensor of the system, responsible for recognizing when an infection is occurring. Structural proteins, such as the capsid that protects the phage genome, are a common trigger because they’re abundant and essential to the phage.
The uncoupling of CmdC exposes the neutralizing antitoxin CmdA to be degraded, which releases the toxin CmdT to do its lethal work.
Toxicity on the loose
The researchers were guided by computational tools, so they knew that CmdT was likely an ADP-ribosyltransferase due to its similarities to other such enzymes. As the name suggests, the enzyme transfers an ADP ribose onto its target.
To determine if CmdT interacted with any sequences or positions in particular, they tested a mix of short sequences of single-stranded RNA. RNA has four bases: A, U, G, and C, and the evidence points to the enzyme recognizing GA sequences.
The CmdT modification of GA sequences in mRNA blocks their translation. The cessation of creating new proteins aborts the infection, preventing the phage from spreading beyond the host to infect other bacteria.
“Not only is it a new type of bacterial immune system, but the enzyme involved does something that’s never been seen before: the ADP-ribsolyation of mRNA,” Vassallo says.
Although the paper outlines the broad strokes of the anti-phage defense system, it’s unclear how CmdC interacts with the capsid protein, and how the chemical modification of GA sequences prevents translation.
Beyond bacteria
More broadly, exploring anti-phage defense aligns with the Laub Lab’s overall goal of understanding how bacteria function and evolve, but these results may have broader implications beyond bacteria.
Senior author Michael Laub, Salvador E. Luria Professor and Howard Hughes Medical Institute Investigator, says the ADP-ribosyltransferase has homologs in eukaryotes, including human cells. They are not well studied, and not among the Laub Lab’s research topics, but they are known to be up-regulated in response to viral infection.
“There are so many different — and cool — mechanisms by which organisms defend themselves against viral infection,” Laub says. “The notion that there may be some commonality between how bacteria defend themselves and how humans defend themselves is a tantalizing possibility.”
The Davidson Kennedy Professor in the College of Arts and Sciences and professor of music and Africana studies in the School of Arts Sciences, Rommen will begin the new appointment on Jan. 1.
The Davidson Kennedy Professor in the College of Arts and Sciences and professor of music and Africana studies in the School of Arts Sciences, Rommen will begin the new appointment on Jan. 1.
The Division of Public Safety helps keep the University community safe through programs like the 24/7 Walking Escort Service, the UPennAlert Emergency Notification System, Penn Guardian, and the HELP Line.
The Division of Public Safety helps keep the University community safe through programs like the 24/7 Walking Escort Service, the UPennAlert Emergency Notification System, Penn Guardian, and the HELP Line.
Richard E. Phillips, chief of the division of Neuro-Oncology and an assistant professor of neurology, is among 11 scholars included in this year’s cohort, who will support cancer research and innovation across the country.
Richard E. Phillips, chief of the division of Neuro-Oncology and an assistant professor of neurology, is among 11 scholars included in this year’s cohort, who will support cancer research and innovation across the country.
Scenes from the week of the 2020 presidential vote, clockwise from top left: CNN covers the ongoing race two days after Election Day; workers tally ballots in Pennsylvania; media organizations gather outside the White House; and an Associated Press editor calls Florida’s results.Images from AP Getty Images; photo illustration by Liz Zonarich/Harvard Staff
Nation & World
Lesson about election night for media? Winner should be American democracy.
News outlets ta
Lesson about election night for media? Winner should be American democracy.
News outlets taking greater care in close, fraught contest, experts say, but moving away from horse-race coverage is healthy idea anyway
Christina Pazzanese
Harvard Staff Writer
7 min read
Every four years, major news organizations spend millions to create a dazzling spectacle out of what broadcast news pioneer Reuven Frank once called “a TV show about adding.” At the center of election night coverage is the race to be first to correctly call who will be the next president.
This year, in particular, news outlets are treading carefully. Polls are showing a virtual toss-up in the combative race between Vice President Kamala Harris and former President Donald Trump. Early voting across the U.S. has been heavy. Rules differ from state to state and have shifted considerably since the 2020 election. Add to that the likelihood of post-election legal challenges and even unrest, television and print news organizations are preparing for a dramatic finale that likely won’t conclude Tuesday night.
“The theater of election night coverage” makes it look as if declaring winners and losers that night is the norm and if that doesn’t happen, “something must have gone wrong,” said Nancy Gibbs, former editor in chief of Time magazine and now the Lombard Director of the Shorenstein Center and Edward R. Murrow Professor of the Practice of Press, Politics and Public Policy at Harvard Kennedy School.
“It is perfectly normal in a close race that it will take longer for some states to report than others, and that is not a sign of voter fraud or vote rigging or any of the other accusations.”
Nancy Gibbs
So there’s “an enormous obligation on journalists” to inform and remind people again and again that all 50 states have their own distinct rules about when and how votes are counted “and therefore, it is perfectly normal in a close race that it will take longer for some states to report than others, and that is not a sign of voter fraud or vote rigging or any of the other accusations,” she said.
To guard against that, organizations such as The New York Times, NPR, the Associated Press, and ABC News are taking steps to be more aggressive in explaining the variable state regulations to prepare voters for why there may be delays and to be vigilant on election night for signs of misinformation.
“That’s a major worry, that the period between when people vote and when there’s a decision is a very, very troublesome time for misinformation and for manipulation, and I think news organizations are super focused on that,” said Sally Buzbee, formerly a top editor at the Associated Press and until June, executive editor of The Washington Post.
Since 2000, U.S. elections have been “improbably close” Electoral College contests compared to prior elections, which makes tabulating delays “much more likely,” said Archon Fung, Winthrop Laflin McCormack Professor of Citizenship and Self-Government and director of the Ash Center for Democratic Governance and Innovation at HKS.
“I think the important thing is for there not to be an information vacuum” that bad actors can fill with confusion and disinformation. While it may not be as splashy or entertaining, news outlets can do a lot of civic good while votes are being counted to minimize predictions based on things like exit polls and instead, get “in the weeds” about state election rules and how that affects the vote counting and validating, he said.
The 2020 election between former Vice President Joe Biden and Trump serves as a kind of cautionary tale for news organizations. It took four days to call the election for Biden.
The tally was slowed by a record number of mail and absentee ballots cast due to the pandemic and ended in a close finish with a margin of victory of just 113,000 votes combined in Georgia, Pennsylvania, and Wisconsin.
While votes were still being counted election night, the Trump campaign prematurely declared victory. Even after Biden was declared the winner, the campaign, along with some supporters, pushed false accusations about widespread voter fraud, which were later disproved by investigations and recounts and rejected by courts but nonetheless persist to this day.
“This is literally how AP started. The results from the West had to come in by Pony Express and then telegraph, and so, it definitely took many days to figure out who had won the presidency.”
Sally Buzbee
The very notion of an election night where the results are known hours after the polls close is relatively new. For most of the nation’s history, voting results always took time to come in.
“This is literally how AP started. The results from the West had to come in by Pony Express and then telegraph, and so, it definitely took many days to figure out who had won the presidency,” said Buzbee, currently a Nieman visiting fellow.
The expectation that voters would learn who won sometime after 9 p.m. election night began with the emergence of television in the 1950s.
The industry is now going through a “sea change.” Most major news organizations know “there is still demand for election night and for some spectacle around election night, but … are [also] now keenly aware that there isn’t an Election Day, there’s an election couple days or weeks,” said Buzbee.
Outlets are hoping to head off a repeat of the last election but face some challenges. Newsrooms have seen significant layoffs over the last two years. Some, like NBC, ABC, and the BBC, cut hundreds of jobs in the last two months. Election coverage is expensive, takes many months of careful planning, and isn’t necessarily a money-maker. Still, news organizations think it’s worth the investment and effort.
“You’re building credibility if you do a good job on election night. If you are accurate, if you are compelling … on election night, then you are doing a good job with a big audience and what you hope is that translates into credibility long term,” Buzbee said.
Gibbs agrees.
“At the most basic level, what is a bigger news story than who is going to be the next president of the United States, who’s going to control the Senate, who’s going to control the Congress, who’s going to be confirming the next Supreme Court justices? Those outcomes have enormous impact on people’s lives and prosperity and health,” so it’s not surprising that news outlets devote so much time and resources to election coverage, she said.
Even if news outlets, especially TV networks, suddenly changed their approach, “even if somehow we dismantled the entire machinery of election night and made it ‘election week,’ I don’t think that that would change the fact that more and more people, especially people who are under 30 or even under 50, have many, many other sources where they’re going to be getting their information,” she said.
Many election officials learned from 2020 and are doing significant public outreach to provide greater clarity around their state’s rules and procedures, hoping to tamp down misinformation and reassure voters that their election is secure and fair, said Fung.
But the responsibility should not be shouldered solely by officials and journalists.
“I think every organization in society, whether it’s a business, or colleges and universities, or high schools, or nonprofits, should do their part to make our democratic institutions work. Obviously, a big part of that is encouraging people to participate in the democracy. But now, more and more, a bigger part [is] keeping people informed and updated” about what’s going on and why, said Fung.
“But I think we all have an individual responsibility as citizens, and then an organizational responsibility, to try to turn down the temperature and keep people informed in this moment of high anxiety on almost all sides.”
On Wednesday, Nov. 6, Gibbs and Fung will join other HKS panelists for “Democracy 2024: The Day After” in the JFK Jr. Forum at 1pm.
Assistant Professor of Linguistics Tanya Bondarenko.Photo by Dylan Goodman
Arts & Culture
WOLF lab is working to document, preserve Native languages
At Harvard, the Linguistics Department wants to revitalize Alabama in Texas
Nikki Rojas
Harvard Staff Writer
November 1, 2024
4 min read
It’s one thing to be immersed in a language. It’s another to speak it. And Ava Silva ’27, who grew up
WOLF lab is working to document, preserve Native languages
At Harvard, the Linguistics Department wants to revitalize Alabama in Texas
Nikki Rojas
Harvard Staff Writer
4 min read
It’s one thing to be immersed in a language. It’s another to speak it. And Ava Silva ’27, who grew up in the Alabama-Coushatta Tribe’s, wasn’t fluent in Alabama.
“My áapo’s first language is Alabama,” said Silva, using the Alabama word for grandmother. “I could never fully understand it, but … I loved sitting beside her and just hearing her talk.”
At Harvard, Silva quickly connected with Assistant Professor of Linguistics Tanya Bondarenko. Within months, Bondarenko’s WOLF Lab (Working on Language in the Field) began studying the innerworkings of Alabama. Over the summer, Bondarenko and five linguistics students traveled to the Alabama-Coushatta Reservation in East Texas to document, preserve, and revitalize the endangered language.
Alabama is no longer naturally transmitted to Alabama-Coushatta children, Bondarenko explained. “In my community, language is such a beautiful thing, but it’s also a point of pain,” Silva said.
“To know the language is to know the culture, and the culture feeds from the language.”
Ava Silva ’27
For those in her grandmother’s generation, enrolling in primary school brought their first encounters with English. “They were hit with rulers and dealt with some stuff trying to adapt into this English-speaking society,” Silva said. “So there’s a lot of people who didn’t teach their kids [Alabama] because they have that pain with them.”
The pattern sounded familiar to Bondarenko, who specializes in syntax, semantics, and linguistic fieldwork. “These are the stories we encounter all the time,” she said. “Other people come and take their land, try to take everything else from them, try to prohibit people from speaking their language and from doing their cultural practices. It’s heartbreaking, and an important factor in why languages cease to be spoken.
“A lot of languages in the world are endangered, around 44 percent,” she continued. “If the work is not done, we will just lose the languages and even information about those languages completely.”
WOLF Lab provides opportunities for linguists interested in field work and understudied languages. During their visit with the Alabama-Coushatta Tribe this summer, the team worked on elicitations with 19 native speakers to learn how Alabama is spoken today and gather recordings of the language in use. The team collected more than 140 hours of recordings that were already shared with the community and are now being analyzed in Cambridge.
As a community coordinator, Silva helped WOLF Lab identify native speakers. She also partnered with the morphology team to research the verb conjugations.
“To be able to do this project and say, ‘This language is so beautiful and I’m sorry that anyone ever made you feel like it wasn’t,’ has been something I love,” Silva said. “You see them light up and have this moment of healing.”
Jacob Kodner, a second-year Ph.D. candidate in the Department of Linguistics and member of the lab, noted that many linguistic theories are based on English or other Indo-European languages. “For me, as a linguist, it is particularly important to look at languages that are not Indo-European,” he said. “If we want to have a theory of how language works well, we have to have a better sample size.”
He underscored how many Indigenous languages spoken in North America are “critically endangered,” with low numbers of native speakers. While many North American linguists opt to pursue their studies abroad, he argued they can make a greater impact working with Indigenous communities on this continent.
“That’s the beautiful thing about the study of linguistics, to learn more about what these languages have in common and how they differ,” Kodner said.
Findings and future plans were presented to the tribal council. The linguists plan to return to the reservation for further field work over the winter and next summer.
As an Indigenous person and a linguist, Silva also believes it’s crucial to document, preserve, and revitalize Indigenous languages such as Alabama. She argued that revitalization work, in particular, helps Native communities come together. But the work carries deep cultural value as well.
“To know the language is to know the culture,” she said, “and the culture feeds from the language.”
Like humans and other complex multicellular organisms, single-celled bacteria can fall ill and fight off viral infections. A bacterial virus is caused by a bacteriophage, or, more simply, phage, which is one of the most ubiquitous life forms on earth. Phages and bacteria are engaged in a constant battle, the virus attempting to circumvent the bacteria’s defenses, and the bacteria racing to find new ways to protect itself.These anti-phage defense systems are carefully controlled, and prudently ma
Like humans and other complex multicellular organisms, single-celled bacteria can fall ill and fight off viral infections. A bacterial virus is caused by a bacteriophage, or, more simply, phage, which is one of the most ubiquitous life forms on earth. Phages and bacteria are engaged in a constant battle, the virus attempting to circumvent the bacteria’s defenses, and the bacteria racing to find new ways to protect itself.
These anti-phage defense systems are carefully controlled, and prudently managed — dormant, but always poised to strike.
New open-access research recently published in Nature from the Laub Lab in the Department of Biology at MIT has characterized an anti-phage defense system in bacteria, CmdTAC. CmdTAC prevents viral infection by altering the single-stranded genetic code used to produce proteins, messenger RNA.
This defense system detects phage infection at a stage when the viral phage has already commandeered the host’s machinery for its own purposes. In the face of annihilation, the ill-fated bacterium activates a defense system that will halt translation, preventing the creation of new proteins and aborting the infection — but dooming itself in the process.
“When bacteria are in a group, they’re kind of like a multicellular organism that is not connected to one another. It’s an evolutionarily beneficial strategy for one cell to kill itself to save another identical cell,” says Christopher Vassallo, a postdoc and co-author of the study. “You could say it’s like self-sacrifice: One cell dies to protect the other cells.”
The enzyme responsible for altering the mRNA is called an ADP-ribosyltransferase. Researchers have characterized hundreds of these enzymes — although a few are known to target DNA or RNA, all but a handful target proteins. This is the first time these enzymes have been characterized targeting mRNA within cells.
Expanding understanding of anti-phage defense
Co-first author and graduate student Christopher Doering notes that it is only within the last decade or so that researchers have begun to appreciate the breadth of diversity and complexity of anti-phage defense systems. For example, CRISPR gene editing, a technique used in everything from medicine to agriculture, is rooted in research on the bacterial CRISPR-Cas9 anti-phage defense system.
CmdTAC is a subset of a widespread anti-phage defense mechanism called a toxin-antitoxin system. A TA system is just that: a toxin capable of killing or altering the cell’s processes rendered inert by an associated antitoxin.
Although these TA systems can be identified — if the toxin is expressed by itself, it kills or inhibits the growth of the cell; if the toxin and antitoxin are expressed together, the toxin is neutralized — characterizing the cascade of circumstances that activates these systems requires extensive effort. In recent years, however, many TA systems have been shown to serve as anti-phage defense.
Two general questions need to be answered to understand a viral defense system: How do bacteria detect an infection, and how do they respond?
Detecting infection
CmdTAC is a TA system with an additional element, and the three components generally exist in a stable complex: the toxic CmdT, the antitoxin CmdA, and an additional component called a chaperone, CmdC.
If the phage’s protective capsid protein is present, CmdC disassociates from CmdT and CmdA and interacts with the phage capsid protein instead. In the model outlined in the paper, the chaperone CmdC is, therefore, the sensor of the system, responsible for recognizing when an infection is occurring. Structural proteins, such as the capsid that protects the phage genome, are a common trigger because they’re abundant and essential to the phage.
The uncoupling of CmdC exposes the neutralizing antitoxin CmdA to be degraded, which releases the toxin CmdT to do its lethal work.
Toxicity on the loose
The researchers were guided by computational tools, so they knew that CmdT was likely an ADP-ribosyltransferase due to its similarities to other such enzymes. As the name suggests, the enzyme transfers an ADP ribose onto its target.
To determine if CmdT interacted with any sequences or positions in particular, they tested a mix of short sequences of single-stranded RNA. RNA has four bases: A, U, G, and C, and the evidence points to the enzyme recognizing GA sequences.
The CmdT modification of GA sequences in mRNA blocks their translation. The cessation of creating new proteins aborts the infection, preventing the phage from spreading beyond the host to infect other bacteria.
“Not only is it a new type of bacterial immune system, but the enzyme involved does something that’s never been seen before: the ADP-ribsolyation of mRNA,” Vassallo says.
Although the paper outlines the broad strokes of the anti-phage defense system, it’s unclear how CmdC interacts with the capsid protein, and how the chemical modification of GA sequences prevents translation.
Beyond bacteria
More broadly, exploring anti-phage defense aligns with the Laub Lab’s overall goal of understanding how bacteria function and evolve, but these results may have broader implications beyond bacteria.
Senior author Michael Laub, Salvador E. Luria Professor and Howard Hughes Medical Institute Investigator, says the ADP-ribosyltransferase has homologs in eukaryotes, including human cells. They are not well studied, and not among the Laub Lab’s research topics, but they are known to be up-regulated in response to viral infection.
“There are so many different — and cool — mechanisms by which organisms defend themselves against viral infection,” Laub says. “The notion that there may be some commonality between how bacteria defend themselves and how humans defend themselves is a tantalizing possibility.”
In 1969, Apollo 11 astronaut Neil Armstrong stepped onto the moon's surface — a momentous engineering and science feat marked by his iconic words, "That's one small step for a man, one giant leap for mankind." Three years later, Apollo 17 became NASA's final Apollo mission to land humans on the brightest and largest object in our night sky. Since then, no humans have visited the moon or traveled past low Earth orbit (LEO), largely because of shifting politics, funding, and priorities.But that is
In 1969, Apollo 11 astronaut Neil Armstrong stepped onto the moon's surface — a momentous engineering and science feat marked by his iconic words, "That's one small step for a man, one giant leap for mankind." Three years later, Apollo 17 became NASA's final Apollo mission to land humans on the brightest and largest object in our night sky. Since then, no humans have visited the moon or traveled past low Earth orbit (LEO), largely because of shifting politics, funding, and priorities.
But that is about to change. Through NASA's Artemis II mission, scheduled to launch no earlier than September 2025, four astronauts will be the first humans to travel to the moon in more than 50 years. In 2022, the uncrewed Artemis I mission proved the ability of NASA's new spacecraft Orion — launched on the new heavy-lift rocket, the Space Launch System — to travel farther into space than ever before and return safely to Earth. Building on that success, the 10-day Artemis II mission will pave the way for Artemis III, which aims to land astronauts on the lunar surface, with the goal of establishing a future lasting human presence on the moon and preparing for human missions to Mars.
One big step for lasercom
Artemis II will be historic not only for renewing human exploration beyond Earth, but also for being the first crewed lunar flight to demonstrate laser communication (lasercom) technologies, which are poised to revolutionize how spacecraft communicate. Researchers at MIT Lincoln Laboratory have been developing such technologies for more than two decades, and NASA has been infusing them into its missions to meet the growing demands of long-distance and data-intensive space exploration.
As spacecraft push farther into deep space and advanced science instruments collect ultrahigh-definition (HD) data like 4K video and images, missions need better ways to transmit data back to Earth. Communication systems that encode data onto infrared laser light instead of radio waves can send more information at once and be packaged more compactly while operating with less power. Greater volumes of data fuel additional discoveries, and size and power efficiency translate to increased space for science instruments or crew, less expensive launches, and longer-lasting spacecraft batteries.
For Artemis II, the Orion Artemis II Optical Communications System (O2O) will send high-resolution video and images of the lunar surface down to Earth — a stark contrast to the blurry, grainy footage from the Apollo program. In addition, O2O will send and receive procedures, data files, flight plans, voice calls, and other communications, serving as a high-speed data pipeline between the astronauts on Orion and mission control on Earth. O2O will beam information via lasers at up to 260 megabits per second (Mbps) to ground optical stations in one of two NASA locations: the White Sands Test Facility in Las Cruces, New Mexico, or the Jet Propulsion Laboratory's Table Mountain Facility in Wrightwood, California. Both locations are ideal for their minimal cloud coverage, which can obstruct laser signals as they enter Earth's atmosphere.
At the heart of O2O is the Lincoln Laboratory–developed Modular, Agile, Scalable Optical Terminal (MAScOT). About the size of a house cat, MAScOT features a 4-inch telescope mounted on a two-axis pivoted support (gimbal), and fixed back-end optics. The gimbal precisely points the telescope and tracks the laser beam through which communications signals are emitted and received, in the direction of the desired data recipient or sender. Underneath the gimbal, in a separate assembly, are the back-end optics, which contain light-focusing lenses, tracking sensors, fast-steering mirrors, and other components to finely point the laser beam.
A series of firsts
MAScOT made its debut in space as part of the laboratory's Integrated Laser Communications Relay Demonstration (LCRD) LEO User Modem and Amplifier Terminal (ILLUMA-T), which launched to the International Space Station (ISS) in November 2023. After a few weeks of preliminary testing, ILLUMA-T transmitted its first beam of laser light to NASA's LCRD satellite in geosynchronous (GEO) orbit 22,000 miles above Earth's surface. Achieving this critical step, known as "first light," required precise pointing, acquisition, and tracking of laser beams between moving spacecraft.
Over the following six months, the laboratory team performed experiments to test and characterize the system's basic functionality, performance, and utility for human crews and user applications. Initially, the team checked whether the ILLUMA-T-to-LCRD optical link was operating at the intended data rates in both directions: 622 Mbps down and 51 Mbps up. In fact, even higher data rates were achieved: 1.2 gigabits per second down and 155 Mbps up.
"This first demonstration of a two-way, end-to-end laser communications relay system, in which ILLUMA-T was the first LEO user of LCRD, is a major milestone for NASA and other space organizations," says Bryan Robinson, leader of the laboratory's Optical and Quantum Communications Group. "It serves as a precursor to optical relays at the moon and Mars."
After the relay was up and running, the team assessed how parameters such as laser transmit power, optical wavelength, and relative sun angles impact terminal performance. Lastly, they contributed to several networking experiments over multiple nodes to and from the ISS, using NASA's delay/disruption tolerant networking protocols. One landmark experiment streamed 4K video on a round-trip journey from an airplane flying over Lake Erie in Ohio, to the NASA Glenn Research Center in nearby Cleveland, to the NASA White Sands Test Facility in New Mexico, to LCRD in GEO, to ILLUMA-T on the ISS, and then back. In June 2024, ILLUMA-T communicated with LCRD for the last time and powered off.
"Our success with ILLUMA-T lays the foundation for streaming HD video to and from the moon," says co-principal investigator Jade Wang, an assistant leader of the Optical and Quantum Communications Group. "You can imagine the Artemis astronauts using videoconferencing to connect with physicians, coordinate mission activities, and livestream their lunar trips."
Moon ready
The Artemis II O2O mission will employ the same overall MAScOT design proven on ILLUMA-T. Lincoln Laboratory delivered the payload to NASA's Kennedy Space Center for installation and testing on the Orion spacecraft in July 2023.
"Technology transfer to government is what Lincoln Laboratory does as a federally funded research and development center," explains lead systems engineer Farzana Khatri, a senior staff member in the Optical and Quantum Communications Group. "We not only transfer technology, but also work with our transfer partner to ensure success. To prepare for O2O, we are leveraging lessons learned during ILLUMA-T operations. Recently, we conducted pre-mission dry runs to enhance coordination among the various teams involved."
In August 2024, the laboratory completed an important milestone for the O2O optical terminal: the mission readiness test. The test involved three phases. In the first phase, they validated terminal command and telemetry functions. While laboratory-developed ground software was directly used to command and control ILLUMA-T, for O2O, it will run in the background and all commands and telemetry will be interfaced through software developed by NASA's Johnson Space Center Mission Control Center. In the second phase, the team tested different user applications, including activating some of Orion's HD cameras and sending videos from Cape Canaveral to Johnson Space Center as a mock-up for the actual space link. They also ran file transfers, video conferencing, and other operations on astronaut personal computing devices. In the third phase, they simulated payload commissioning activities, such as popping the latch on the optical hardware and moving the gimbal, and conducting ground terminal operations.
"For O2O, we want to show that this optical link works and is helpful to astronauts and the mission," Khatri says. "The Orion spacecraft collects a huge amount of data within the first day of a mission, and typically these data sit on the spacecraft until it lands and take months to be offloaded. With an optical link running at the highest rate, we should be able to get data down to Earth within a few hours for immediate analysis. Furthermore, astronauts can stay in touch with Earth during their journey, inspiring the public and the next generation of deep-space explorers, much like the Apollo 11 astronauts who first landed on the moon 55 years ago."
The banging on the tables begins almost immediately.It’s September, and the 53 first-year students in MIT’s Concourse program are debating the pros and cons of capitalism during one of their Friday lunchtime seminars in Building 16. Sasha Rickard ’19 — assistant director of Concourse and the chair, or moderator, of the debate — reminds everyone of the rules: “Stand when you speak, address your questions and comments to the chair, and if you hear someone saying something you support, give them a
The banging on the tables begins almost immediately.
It’s September, and the 53 first-year students in MIT’s Concourse program are debating the pros and cons of capitalism during one of their Friday lunchtime seminars in Building 16. Sasha Rickard ’19 — assistant director of Concourse and the chair, or moderator, of the debate — reminds everyone of the rules: “Stand when you speak, address your questions and comments to the chair, and if you hear someone saying something you support, give them a little bang on the table.” The first speaker walks to the podium, praises the benefits of capitalism for her allotted four minutes, and is rewarded with a cacophony of table-banging.
Other students jump up to question her argument. The next speaker takes the opposite view, denouncing capitalism. For nearly two hours, there are more speeches on both sides of the issue, more questions, more enthusiastic banging on tables. Participants call the back-and-forth “intellectually serious,” “genuine good-faith engagement,” and “incredibly fun.”
The debate is one of the cornerstones of MIT’s Civil Discourse Project, a joint venture between the Concourse program and philosophy professors Brad Skow and Alex Byrne. The premise behind the Civil Discourse Project is that first-year students who practice talking and listening to each other even when they disagree will become more thoughtful and open-minded citizens, during their time at MIT and beyond.
“It’s consistent with free expression and free speech, but also consistent with the mission of the university, which is teaching and learning and getting to a greater sense of the truth,” says Linda Rabieh, a senior lecturer in the Concourse program and co-leader of the Civil Discourse Project with Skow, Byrne, and Concourse Director Anne McCants.
The project appears to be working. First-year Ace Chun, one of the student debaters, says,“It’s easy to just say, ‘Well, you have your opinion and I have mine,’ or ‘You're wrong and I'm right.’ But going through the process of disagreement and coming up with a more informed position feels really important.”
It's debatable
Funded by the Arthur Vining Davis Foundations, the project launched in fall 2023 as a series of paired events. First, two scholars with opposing views on a particular subject — often one from MIT and one from another institution — participate in a formal debate on campus. A week or two later, the Concourse students, having seen the first debate, hold their own version on the same topic. Past debates have explored feminism, climate change, Covid-19 public-health policies, and the Israel-Hamas conflict in Gaza.
This year’s first scholar debate explored the question “Is capitalism defensible?” and featured economist Tyler Cowen of George Mason University, who argued in the affirmative, and political scientist Alex Gourevitch of Brown University, who vigorously disagreed. Roughly 350 people registered to watch the two take turns delivering prepared remarks and answering audience questions in a large auditorium in the Stata Center.
These debates are open to everyone at MIT, as well as the public. They are not recorded or livestreamed because, Skow says, “we want people to feel free to say whatever’s on their mind without worrying that it’s going to be on the internet forever.” Concourse students in attendance look for ideas for what they might say in their own debate, but also, Rabieh says, how they might say it. Cowen and Gourevitch remained respectful even when their exchanges grew louder and hotter, and they ended the evening with a handshake. Students “were seeing reasonable people disagree,” Rabieh says.
Five or six years ago, Rabieh had begun to notice a reluctance among students to talk about controversial ideas; they didn’t want to risk offending anyone. “Most MIT students spend a lot of their time doing math, science, or engineering, and it’s tempting for them to take refuge in the certainty of quantitative reasoning,” she says.
Today’s combative political and cultural landscape can make it even harder to get students talking about hot-button issues, and as a result, civil discourse has become something of a holy grail in higher education. Some institutions (including MIT) now incorporate free-speech exercises into their orientation programs; others host “conversation” events or offer special faculty training. Byrne sees MIT’s Civil Discourse Project, with its connection to the Concourse curriculum, as consistent, pragmatic, hands-on learning. “We’re talking instead of just talking about talking,” he says. “It's like swimming. It’s all very well to hear a lecture about pool etiquette — stay in your lane, don't dive-bomb your fellow swimmers — but at some point, you have to actually get in the pool.”
Learning to argue
Concourse’s “pool” can be found in a student lounge in Building 16. That’s where a group of “debate fellows” — older students who have gone through the Concourse program themselves — coach the first-year students in crafting statements and speeches that can be presented at a debate. It’s also where the fellows help Rabieh and Rickard adapt the original debate question into a resolution the younger students can reasonably argue about. “Our students are still figuring out what they think about a lot of things,” Rickard says. So, the question debated by Cowen and Gourevitch — Is capitalism defensible? — becomes: “Capitalism is the best economic system because it prioritizes freedom and material wealth.”
The first-year students jumped in. During their lunchtime debate, they crowded around tables, ate lasagna and salad, and waited their turn at the podium. They told personal stories to illustrate their points. They tried arguing in support of an idea that they actually disagreed with. They admitted when they were stumped. “That’s a tricky question,” one of the speakers conceded.
“At a place like MIT, it’s easy to get caught up in your own world, like ‘I have this big assignment or I have this paper due,’” says debate fellow and senior Isaac Lock. “With the Civil Discourse Project, students are thinking about big ideas, maybe not having super-strong, solid opinions, but they’re at least considering them in ways that they probably haven’t done before.”
They’re also learning what a balanced conversation feels like. The student debates use a format developed by Braver Angels, a national organization that holds workshops and debates to try to bridge the partisan divide that exists in the United States today. With strict time limits and room for both prepared speeches and spontaneous remarks, the format “allows different types of people to speak,” says debate fellow Arianna Doss, a sophomore. “Because of the debates, we're better-equipped to articulate our points and provide nuance — why I believe what I believe — while also acknowledging and understanding the shortcomings of our arguments.”
The Civil Discourse Project will publish more about its spring semester lectures on its website. Coleman Hughes, author of “The End of Race Politics: Arguments for a Colorblind America,” will be on campus March 3, and a debate on the relevance of legacy media is being planned for later in the semester.
The banging on the tables begins almost immediately.It’s September, and the 53 first-year students in MIT’s Concourse program are debating the pros and cons of capitalism during one of their Friday lunchtime seminars in Building 16. Sasha Rickard ’19 — assistant director of Concourse and the chair, or moderator, of the debate — reminds everyone of the rules: “Stand when you speak, address your questions and comments to the chair, and if you hear someone saying something you support, give them a
The banging on the tables begins almost immediately.
It’s September, and the 53 first-year students in MIT’s Concourse program are debating the pros and cons of capitalism during one of their Friday lunchtime seminars in Building 16. Sasha Rickard ’19 — assistant director of Concourse and the chair, or moderator, of the debate — reminds everyone of the rules: “Stand when you speak, address your questions and comments to the chair, and if you hear someone saying something you support, give them a little bang on the table.” The first speaker walks to the podium, praises the benefits of capitalism for her allotted four minutes, and is rewarded with a cacophony of table-banging.
Other students jump up to question her argument. The next speaker takes the opposite view, denouncing capitalism. For nearly two hours, there are more speeches on both sides of the issue, more questions, more enthusiastic banging on tables. Participants call the back-and-forth “intellectually serious,” “genuine good-faith engagement,” and “incredibly fun.”
The debate is one of the cornerstones of MIT’s Civil Discourse Project, a joint venture between the Concourse program and philosophy professors Brad Skow and Alex Byrne. The premise behind the Civil Discourse Project is that first-year students who practice talking and listening to each other even when they disagree will become more thoughtful and open-minded citizens, during their time at MIT and beyond.
“It’s consistent with free expression and free speech, but also consistent with the mission of the university, which is teaching and learning and getting to a greater sense of the truth,” says Linda Rabieh, a senior lecturer in the Concourse program and co-leader of the Civil Discourse Project with Skow, Byrne, and Concourse Director Anne McCants.
The project appears to be working. First-year Ace Chun, one of the student debaters, says,“It’s easy to just say, ‘Well, you have your opinion and I have mine,’ or ‘You're wrong and I'm right.’ But going through the process of disagreement and coming up with a more informed position feels really important.”
It's debatable
Funded by the Arthur Vining Davis Foundations, the project launched in fall 2023 as a series of paired events. First, two scholars with opposing views on a particular subject — often one from MIT and one from another institution — participate in a formal debate on campus. A week or two later, the Concourse students, having seen the first debate, hold their own version on the same topic. Past debates have explored feminism, climate change, Covid-19 public-health policies, and the Israel-Hamas conflict in Gaza.
This year’s first scholar debate explored the question “Is capitalism defensible?” and featured economist Tyler Cowen of George Mason University, who argued in the affirmative, and political scientist Alex Gourevitch of Brown University, who vigorously disagreed. Roughly 350 people registered to watch the two take turns delivering prepared remarks and answering audience questions in a large auditorium in the Stata Center.
These debates are open to everyone at MIT, as well as the public. They are not recorded or livestreamed because, Skow says, “we want people to feel free to say whatever’s on their mind without worrying that it’s going to be on the internet forever.” Concourse students in attendance look for ideas for what they might say in their own debate, but also, Rabieh says, how they might say it. Cowen and Gourevitch remained respectful even when their exchanges grew louder and hotter, and they ended the evening with a handshake. Students “were seeing reasonable people disagree,” Rabieh says.
Five or six years ago, Rabieh had begun to notice a reluctance among students to talk about controversial ideas; they didn’t want to risk offending anyone. “Most MIT students spend a lot of their time doing math, science, or engineering, and it’s tempting for them to take refuge in the certainty of quantitative reasoning,” she says.
Today’s combative political and cultural landscape can make it even harder to get students talking about hot-button issues, and as a result, civil discourse has become something of a holy grail in higher education. Some institutions (including MIT) now incorporate free-speech exercises into their orientation programs; others host “conversation” events or offer special faculty training. Byrne sees MIT’s Civil Discourse Project, with its connection to the Concourse curriculum, as consistent, pragmatic, hands-on learning. “We’re talking instead of just talking about talking,” he says. “It's like swimming. It’s all very well to hear a lecture about pool etiquette — stay in your lane, don't dive-bomb your fellow swimmers — but at some point, you have to actually get in the pool.”
Learning to argue
Concourse’s “pool” can be found in a student lounge in Building 16. That’s where a group of “debate fellows” — older students who have gone through the Concourse program themselves — coach the first-year students in crafting statements and speeches that can be presented at a debate. It’s also where the fellows help Rabieh and Rickard adapt the original debate question into a resolution the younger students can reasonably argue about. “Our students are still figuring out what they think about a lot of things,” Rickard says. So, the question debated by Cowen and Gourevitch — Is capitalism defensible? — becomes: “Capitalism is the best economic system because it prioritizes freedom and material wealth.”
The first-year students jumped in. During their lunchtime debate, they crowded around tables, ate lasagna and salad, and waited their turn at the podium. They told personal stories to illustrate their points. They tried arguing in support of an idea that they actually disagreed with. They admitted when they were stumped. “That’s a tricky question,” one of the speakers conceded.
“At a place like MIT, it’s easy to get caught up in your own world, like ‘I have this big assignment or I have this paper due,’” says debate fellow and senior Isaac Lock. “With the Civil Discourse Project, students are thinking about big ideas, maybe not having super-strong, solid opinions, but they’re at least considering them in ways that they probably haven’t done before.”
They’re also learning what a balanced conversation feels like. The student debates use a format developed by Braver Angels, a national organization that holds workshops and debates to try to bridge the partisan divide that exists in the United States today. With strict time limits and room for both prepared speeches and spontaneous remarks, the format “allows different types of people to speak,” says debate fellow Arianna Doss, a sophomore. “Because of the debates, we're better-equipped to articulate our points and provide nuance — why I believe what I believe — while also acknowledging and understanding the shortcomings of our arguments.”
The Civil Discourse Project will publish more about its spring semester lectures on its website. Coleman Hughes, author of “The End of Race Politics: Arguments for a Colorblind America,” will be on campus March 3, and a debate on the relevance of legacy media is being planned for later in the semester.
Niles Singer/Harvard Staff Photographer
Nation & World
‘I wanted to make a difference in America’
Christina Pazzanese
Harvard Staff Writer
November 1, 2024
long read
Robert Putnam’s ‘Bowling Alone’ sounded an alarm we still haven’t answered
Part of the
Experience
series
Scholars at Harvard tell their stories in the Experience series.
Scholars at Harvard tell their stories in the Experience series.
Robert Putnam is that rarest of academics: a crossover star.
Putnam, the Peter and Isabel Malkin Professor of Public Policy, Emeritus, grew up in postwar Port Clinton, Ohio, a working-class town on Lake Erie. The kids played Little League together, parents were on the PTA, and everyone in the community gathered in groups to worship, play bridge, and help solve local challenges.
Memories of his youth would become Putnam’s intellectual lodestar for a life of pioneering scholarship and lead to a landmark book, “Bowling Alone: The Collapse and Revival of American Community” in 2000, which made him one of the world’s most famous political scientists.
Putnam argued in “Bowling Alone” that the glue that holds communities together comes not from formal institutions, but from social ties forged at places like churches, Elks Club meetings, and bowling leagues. That book, along with his earlier work identifying a now-widely used conflict resolution theory known as “the two-level game,” won him his field’s most prestigious honors. His desire to turn theory into problem-solving policy earned him the ears of Presidents Bill Clinton, George Bush, and Barack Obama.
Putnam, now 83, came to Harvard’s Government Department in 1979. In addition to research and teaching, he held several administrative posts, including dean of Harvard Kennedy School (1989-1991), associate dean of the Faculty of Arts & Sciences, and director of the Weatherhead Center for International Affairs. Putnam retired from teaching in 2018 but remains a member of the Kennedy School faculty.
This interview was edited for length and clarity.
You’re best known for your work on the important effect that community and social connection have on American society. Tell me about your family life growing up in Port Clinton.
Port Clinton was a small town. I was born in 1941, so I’m a pre-Baby Boomer. I was born in 1941, so I’m a pre-Baby Boomer. My parents were both fairly well-educated. My dad had a master’s degree in business and was the first in his family to go to college. He graduated from the University of Michigan right in the middle of the Depression, so the first 10 years of his career he was looking for jobs.
Then he went into the Navy when the war started, and he lost a leg in the war. Back in the day, military veterans had very little support. He spent a year in the hospital in the Philadelphia Navy Yard.
After the war, he had a wife and a young child — me — and no way to make a living. But my dad was a talented, hard-working guy, and within a couple of years he had started a small construction company from scratch. As a start-up contractor he built houses on spec. He was outgoing and soon became one of the town leaders, very much involved in civic life. But in 1962, while I was in college, there was a big national housing recession, and he went bankrupt.
In short, I grew up in a fairly comfortable life, but that happened to have been the only 10 years of my family’s life when we were comfortable. Shortly after he went bankrupt, he died of a heart attack, so he died very young, leaving me the sole support of my chronically ill mom.
Was your community a “Leave It to Beaver” kind of place—homogenous racially and economically?
No. It was actually very mixed. On the one hand, it was a farming area. I could walk out my back door into farmland. But it was also part of Greater Detroit. There was one big factory in town, Standard Products, which was a supplier to Detroit. They made the little rubber molding around car windows.
Many of the dads of my classmates were UAW workers, so it was solid working class. And then, some kids in my class were kids of farmers, and some were poor. Nobody was very rich and nobody was very poor.
The town was small, and it was very cohesive. We all played on the same basketball teams and Little League. So, growing up in a close family and a close community, I was conscious of the importance of community, even though I wouldn’t have had the words for it.
The school was integrated; my bowling team was integrated — three white members and two Black members. The president of the student body was Black, and the second-ranked student in my class was Black. We were all friends.
Were you socially active?
By personality, I’m shy. I was precocious, if I can put it that way. I was focused on books. My mom didn’t want me to be spoiled, so she kept telling me, “You’ve got to get out and join things!”
When I was in grade school, I didn’t play sports. So early every morning, she would get up and play catch with me in front of our house. Ruth Putnam was bound and determined that Bobby Putnam was not going to be an aloof intellectual.
In high school, I belonged to everything. I was in sports; I was in debate; I was in band; I was in the science club; and I was in chorus. I was doing that despite the fact that, inside, I was shy.
Also, I was trying to be one of the guys, so even though I was not a natural athlete at all, in my junior year I went out for football. I had very poor eyesight, so the only position I could play was a position in which you didn’t have to see anything. That meant I was on the offensive line, where all you had to do was try to block the guy in front of you. And I was awful. I was like fifth string or something.
What I didn’t know was that all my classmates were watching the fact that though I was good in school, I had put myself in a position in which I was not good. And, for that reason, they elected me president of the student class. Now, I’m not bragging about that. I’m trying to say, Here’s this little kid. He’s basically shy. His mom is pushing him to get involved in community. He takes on that lesson. And moreover, it turned out the community was a welcoming community not just to me, it was welcoming to everybody.
You enrolled at Swarthmore College in 1959. What was campus life, especially the political mood, like back then?
Let’s look at Bob Putnam at this moment: He’s a hick from Ohio; he’s a science nerd; he’s a Methodist; and he’s a moderate Republican. In the summer of 1960 — this now sounds crazy — I would write to the Nixon campaign, volunteering.
Swarthmore was small. It was homogeneous socially and intellectually and even politically, and it was intense. And very intellectual. Sophomore year, the fall of 1960, I had to take a distribution course, so I took a course in political science. There were two guys running for president — Kennedy and Nixon.
Swarthmore was very left-wing. It was very socially conscious. Kennedy was a little conservative for many people at Swarthmore.
In this poli-sci class, there was this cute coed named Rosemary sitting in front of me. After class, we started hanging out together. She’s Jewish [Putnam would convert after they married], she comes from a big city — Chicago. Her parents are very clearly New Deal Democrats. We got talking. Of course, we were talking a little bit about politics because that was the class we had just come from.
For our first date, she took me to a Kennedy rally. Sort of, “In your face, Putnam!” And, of course, the next week, I invited her to a Nixon rally. Those were our first two dates. We got along pretty well, and by the election, I was a Democrat.
On Jan. 20, 1961, we said, “What the hell? It’s not that far down to Washington. We’ll go to the inauguration.” We heard Kennedy say with our own ears, “Ask not what your country can do for you. Ask what you can do for your country.” I thought he was speaking just to me. And I thought, “I’ve got to do something about America. I have obligations to this country.”
Not long after, you switched your focus in college to psychology, history, and political science. Who were some of your mentors back then?
In social psychology, I was lucky enough to have two excellent professors. Dean Peabody was one. He was not well known then, but he became a very well-known social psychologist. And Solomon Asch, who at the time was the leading social psychologist in the world. He was a great teacher; he taught small seminars. He was most famous for something called the Asch Social Pressure experiment, which was about the effects of conformity.
Another was Roland Pennock, who was a very distinguished political philosopher. He was known globally, even though he taught at a tiny liberal arts college. I also became quite close to Chuck Gilbert, another Swarthmore professor. The relationships you had with your mentors there were very intense.
After Swarthmore, you studied at Balliol College, Oxford, on a Fulbright scholarship and then headed to Yale for your master’s degree and doctorate. What drew you there?
Yale happened at that point to have the best political science department in the world. They had extremely good political scientists — Bob Lane, Karl Deutsch, and most of all, Bob Dahl, who were the giants of the ’60s and ’70s in political science. We studied in small seminars, so I benefited enormously from working with them.
What was your first big break as a young political scientist, the thing that put you on the professional map?
Professionally the first paper that I wrote as a graduate student was called “Political Attitudes and the Local Community.” It was on this issue of how the community affects the individual. That paper was published in the APSR [American Political Science Review]. That now sometimes happens, but then it was unheard of for a graduate student to publish a paper in the American Political Science Review or World Politics or whatever. It proved to me that I could play in the big leagues in professional terms.
At the time, the Yale paper was just one more term paper. I did not think my whole career was going to be about community. But looking back on it now, I can see, going all the way back to Port Clinton, I was always drawn to these issues. There was something in me that was interested intellectually in the connection between individuals and the community.
Another lucky thing: When I was going on the job market in 1966, ’67, there were very few Ph.D.s coming out then. My birth year was at the end of the baby dearth, during the ’30s and early ’40s, so I had almost no competitors.
But right behind me, universities could see this enormous wave of Boomers entering college. It meant that before I had written a word of my dissertation, I had many tenure-track offers — from Harvard, Yale, Berkeley, UW-Madison, the University of Michigan. This was not because of me; it was because of the times. So, we had all these choices. We could have gone almost anyplace. But Rosemary and I were Midwesterners, and we had parents whom we were close to, so we went to Ann Arbor. That felt like going home.
I’ve always been aware that I am influenced by my environment. So, I choose environments where I’d be led in a certain direction. When I went to Ann Arbor, I knew it was the most quantitative place studying social and political science in the world. I was not that good, but I knew that if I’m there, I would become so — by osmosis. And I did.
After Yale, you joined the Michigan faculty where you taught for several years before taking a detour to work at the White House. You served on the National Security Council under President Jimmy Carter’s legendary national security adviser, Zbigniew Brzezinski. How did that come about?
In about the middle ’70s, I still thought maybe I should be in public service, not just an academic. I got an opportunity to work for a year in the government, and, as it turned out, in the White House. I did that thinking, “Let me put myself there and see whether I like that. Maybe I’ll like it even more than academics or maybe I’ll learn something while I’m there.”
I worked on the staff of the National Security Council for the calendar year 1978. It turned out to be a really important year, and it had a powerful effect on my work in many ways.
It was amazing for me recently to read my own notes from that year, because I could see how much of the whole rest of my career had been affected by that service. I’d never been in government before. I could have taken the Kennedy admonition in that direction. I could have said, “Go into government.” I didn’t. I went into academics.
I took handwritten notes of conversations between the President of the United States Jimmy Carter, and the chancellor of Germany, which, at the time, would have been very highly classified. We were dealing with Iran; we were dealing with nuclear arms control negotiations and U.S.-European relations and U.S.-Soviet relations.
I was just a novice, so I was always working with somebody who knew a lot more than I did. The field I was supposed to be working in was called “global strategy,” but global strategy then actually meant sticking it to the Soviets. So we spent all of our time figuring out — if the Soviets did X, what should be the U.S. response? It was exciting and remarkably interesting.
Did that experience shape any of your subsequent work?
I did some quite significant work based directly on what I learned in Washington. I later invented something called the two-level game model. It turned out to be, in academic terms, a really big deal. The two-level game is what got me into the National Academy of Sciences, not my work on social capital. It came directly out of my service on the NSC.
The other thing that happened was that I was working with Sam Huntington, a famous Harvard professor. He was my boss at the NSC. Somewhat to my surprise, he came away thinking that I was really good. After I finished my time in the NSC, he persuaded Harvard to make me an offer. It seems silly now, but my first thought was, “Why would I want to go to Cambridge? I’m happy. We’re loving it here in Ann Arbor.” But I’ve been at Harvard ever since — nearly half a century.
This idea you’re best known for — that social capital plays a very important role in society — came out of an academic study in Italy that you had worked on for many years. How did that happen?
Most people who know of my work now know only of my work after 1990, when I was already 50 years old. In between the two-level games and “Bowling Alone,” there was this long-term study about Italian regional government. Among academics, it’s at least as well-known as “Bowling Alone.” The book was called “Making Democracy Work.”
If you’re a political scientist and you wanted to study the development of political institutions, logically, you’d like to take the same organization, with the same powers, and the same money and so on, and put it down in different social and economic and political contexts, so you could see which governments flourished and which faltered. That would give you a clue as to how the environment affected the development of these institutions.
Normally, political science is not an experimental study. But while Rosemary and I and our kids were in Italy in 1970, the Italians, without knowing it, created exactly the basis for this kind of study. They created, for the first time, a set of regional governments that had never existed before.
On paper, they were all identical, but in economic and political and cultural and social terms, were vastly different. That unexpectedly turned into a 25-year-long study to measure the success or failure of those new governments.
We had many different hypotheses. We didn’t guess for a long time what turned out to be the critical ingredient — choral societies and football clubs. To what extent did people in a given region join together in things, not just politics, but these informal kinds of connections. We gradually realized, “Whoa! It’s not the education; it’s not the wealth. It’s the choral societies and these informal connections.”
And at the very end of that study, I was a visitor at Oxford and was living in Nuffield College. Late one night, I couldn’t get to sleep. I looked for some book that would put me to sleep. In the library I found this big, thick book of sociological theory called “Foundations of Social Theory” by James Coleman. I thought, “I’ll read this, and I’ll be asleep in 10 minutes.”
I came to this chapter in the book called “Social Capital.” That was the first time I’d ever heard the term, which Coleman used to refer to social connections. Almost immediately, I realized that what I’m talking about in Italy is social capital. It’s these connections, which turn out to be valuable. I ended up not sleeping at all that night. I was so excited.
Up until then, the only people who cared about my work were the half-dozen political scientists in the world who cared about Italian regional government. But now, because I’d introduced the idea of social capital, it got a lot of attention. An Economist review said I was one of the leading social scientists of the last 100 years! That review was another big turning point.
As you were finishing that project, you began to see that this idea about social capital might also explain the political, racial, and social divisions that seemed to be underway in the U.S. beginning in the early 1990s?
Yes. We lived in Lexington at that point. I came down to breakfast, and Rosemary showed me a story in The Boston Globe about how the Lexington PTA didn’t have as many members as it used to. And I thought, “Doesn’t everybody always join the PTA?”
I had a research assistant, so we gathered a little data, and it turned out it wasn’t just Lexington, it was everyplace. PTA membership was falling off. I’d grown up in the ’50s, when all parents belonged to the PTA. And I thought, “What’s going on here?” My dad had been in Kiwanis; I wonder if it’s true in Kiwanis? And sure enough, we got the data on Kiwanis membership. It was also declining. That led me pretty soon to say, “I think I’ve stumbled onto something here.”
I had had lunch with a Harvard donor friend of mine, who happened to own a chain of bowling alleys. I said, “It looks to me like people are not bowling in leagues anymore, but they’re still bowling.” He said, “You’ve stumbled onto the major economic problem facing the bowling industry.”
It turns out if you bowl in a league, you drink four times as much beer, and you eat four times as many pretzels. The money in bowling is not in the balls and shoes, it’s in the beer and pretzels.
So his industry was in the strange situation of having more people coming through the door, but revenue was falling because they weren’t drinking as much beer and eating as many pretzels. When I recounted that story to a colleague at the Kennedy School, Jack Donahue, he said “My goodness, you mean they’re bowling alone?”
Soon I delivered a paper at a research conference in Sweden sponsored by the Nobel Foundation. As a joke I titled the draft “Bowling Alone.” It got published in a tiny little journal that had a circulation of about a dozen called the Journal of Democracy. It was published on Jan. 1, 1995, and the same day, the two leading political commentators in America said in their New Year’s columns, “This crazy professor at Harvard has just discovered this amazing effect.”
Within a week, my mailbox, email, and real letters went through the roof. Within about two weeks, I was invited to Camp David to talk with the Clintons. And within about three weeks, Rosemary and I were profiled in People magazine.
Why do you think “Bowling Alone” caught fire so quickly?
I had stumbled onto something that most Americans actually knew privately. I was pretty confident that I was right because thousands of people wrote me saying, “My father was in Rotary, or he was in the Elks. I was proud of him for being in the Elks. I’m not in the Elks. I know I have good reasons, but I kind of feel sorry, and you’ve now helped me understand my personal problem.” For a long time, the academics were skeptical. But underneath, all those thousands of letters suggested to me that I was onto something.
It’s quite unusual for an academic to produce work that’s taken seriously by peers, butalso crosses over into the popular culture. What was that like?
I know it’s unusual. There are some advantages and disadvantages to it. I told you about going to the John F. Kennedy inaugural. I wanted to make a difference in America. So, at some level, I welcomed it.
Once the book was published around 2000, I became a kind of celebrity. That gave me a standing to reach to a larger audience and to at least fool myself into thinking that I was actually making a difference. Not change history. The way my team and I talked about it is, we were going to try to bend history. Maybe, at the margins, we could help things a little bit.
You did get some pushback. Some questioned the 1995 paper’s accuracy, and for a while it looked like that might flatten enthusiasm for your findings. What happened?
Early on, I discovered that there had been a methodological mistake in the original article in the Journal of Democracy — not that I had made personally, but I’d used some data from a data archive, and the archive data was wrong. Fortunately, I caught that before anybody else did. But still, if you corrected that mistake, then it was not at all clear that I was right.
At one point, there was a newspaper story saying, “‘Bowling Alone’ is bunk.” That was deeply depressing — clinically. I went through this long depression in which I thought, “Maybe I’m completely wrong.” And then I discovered two data archives, and it turned out I was righter than I’d even suspected I was.
After the publication of this journal article, I got a very generous book deal. I thought I was going to publish it in six months, but I spent the next five years trying to figure out whether it really was true that social capital was declining in America. And if so, why it was true? Did it matter? And what could we do about it? Once the book came out, I did not want to have another “‘Bowling Alone’ is bunk” headline.
I had a big research team by this point. Most social scientists then were doing it like artisans — one person doing all the work. By the time I got to “Bowling Alone,” I was doing industrial social science, if I can put it that way. So, it took me five years, but then it came out, and it was a big hit again. Probably right now, I’m better known than I have been in my whole life even though I’m in my mid-80s. That’s fundamentally because the ensuing years have shown that I was right. I was saved by the data.
In “Join or Die,” a new documentary about your work, there’s an old clip where you lament, “We’re watching ‘Friends’ instead of having friends.” Are you disheartened that the downward trends around community and social connection you identified and warned about in the 1990s have perhaps gotten worse?
Things have gotten worse and when I’ve said that I often leave people with the impression that I think I’ve been a failure. I don’t think I’ve been a failure. Even forgetting about my academic successes, I think I’ve been reasonably successful in raising the alarm about this. But I’ve not found the solution.
Over the last 20, 25 years, most of my time has not been spent on research or writing. It’s been spent on outreach. I have worked with hundreds of grassroots groups all across the country, in every state in America, trying to explain what I’ve found and trying to encourage them to think about what they could do to turn this around. You’d have to ask them to be sure, but I think you would find that they would say, “Putnam has not fixed the problem, and we have not fixed the problem, but he’s put us on the right track.”
The second thing I’ve done is to speak to thousands of journalists and public officials. I’ve tried to make use of the fact that I’ve become something of a celebrity. I could tell you how I spent today, which is in four or five Zoom meetings with somebody from New Hampshire who wants to talk about what they can do here to fix things, and Gov. Josh Shapiro’s team to find out what they could do in Pennsylvania to fix these things, and so on. If I could speak to 500 people a year for 25 years, that’s a lot of people.
Political scientists aren’t expected to fix the things they study. But you have worked with U.S. presidents and world leaders, policymakers, local officials, and communities to help them address these challenges. Did that come from your desire to live up to President Kennedy’s call to service?
Actually, I do want to fix America! (Laughter.) The irony of all this is: I haven’t quite fixed it, but underneath, that’s been my real motive.
There’s an approach to social science now, which is to say, “We just do the facts. It’s not our business to say what people should do, much less get out and work with them to do it.”
I strongly disagree with that. Of course, there’s a role for people who just do the math. That’s fine. I admire that. Once upon a time, I did it myself. So, I’m not saying political scientists or social scientists shouldn’t do high-tech, quantitative stuff. I’m just saying that, as a group, social scientists should not be focused just on description. They should also be focused on, in some sense, taking a more active role, trying to change. One way or another, ordinary Americans help to fund what is a pretty cushy life for academics like me, and I think we have some obligation to work on problems that concern them.
In the early 2000s, you launched an initiative to convert ideas about social capital into practical solutions, called the Saguaro Seminar. In a recent interview with The New York Times, you called it your biggest failure. Why?
It turned out the problem was too vague. We had this idea — it came from some experts at the Kennedy School — of so-called executive sessions in which you bring together some academics and some practitioners and try to figure out what to do about a problem. And it works for quite specific problems, like crime. We had a report, but the report did not have the impact that we hoped it would have. In retrospect, I think our hopes were exaggerated.
Lots of people have invested a ton of money in having some kind of national commission on one of these big problems — the national commission on polarization or national commission on inequality. None of them have solved the problem. That’s because, I think, fundamentally it’s not an absence of good ideas, it’s an absence of grassroots efforts. Everybody in that group worked hard, and we had some good ideas, but ideas are not enough.
We did make one really good decision. It was made by a guy named Tom Sander, my No. 2 for about 20 years. We were trying to get together a bunch of practitioners from across the nation. We wanted to have a very diverse group. He heard of this young lawyer who was then working as a community organizer in Chicago. And he came back and said, “I think this guy might be our guy.”
Let me guess: His name was Barack Obama?
He was younger than almost anybody else in the group, and he was super smart and very ambitious. Just lovable. We all liked him because he’s very likable and smart. His nickname was “the governor” because we thought, “You’re so good. Maybe someday you might end up being elected governor of Illinois.” Imagine that! (Laughter.) Within five years, he was president of the United States.
While he was president, quite often, he invited me to the White House to speak. In his second term, he awarded me the National Humanities Medal for my work on community. I don’t think I’m exaggerating to say some of his main initiatives came from my talks with him at the White House. And all of that was because Tom Sander, this colleague of mine, had gone looking for a bright young organizer in Chicago.
So, at every stage of my career, I benefited from somebody else. I was lucky in the mentors and colleagues and friends and students that I had. I was lucky that I met my wife. It was not moments in which I was brilliant, it was moments in which I recognized that somebody else had come up with a good idea.
Nation & World
Why it’s become harder to project presidential winner on election night
Stephen Ansolabehere at the CGIS Knafel Building.Photo by Dylan Goodman
Christy DeSmith
Harvard Staff Writer
November 1, 2024
6 min read
Elections and public opinion expert details lessons learned since 2000, rise of absentee voting
Election night 2000 represents a difficult chapter in the history
Why it’s become harder to project presidential winner on election night
Christy DeSmith
Harvard Staff Writer
6 min read
Elections and public opinion expert details lessons learned since 2000, rise of absentee voting
Election night 2000 represents a difficult chapter in the history of broadcast news.
Exit polls showed a tight presidential election between Vice President Al Gore and Texas Governor George W. Bush. Just before 8 p.m., NBC News projected a Gore victory in the pivotal state of Florida, with all the other major television networks closely following. Two hours later, all retracted their forecasts as Gore’s margins narrowed with the reporting of additional votes.
Just after 2 a.m., the networks felt confident calling the state — and therefore the presidency — for Bush. But two hours later, they had to backtrack again when it became clear Florida was headed for a recount.
“The media had a vulnerability in understanding the changing nature of how elections are actually run,” said Stephen Ansolabehere, Frank G. Thompson Professor of Government, reflecting on Florida’s razor’s edge results, which exposed the networks’ reliance on outdated statistical modeling.
Five years later, Ansolabehere, an elections and public opinion expert, joined a team of social science Ph.D.s charged with improvingdata journalism and election forecasting for CBS News. “I’ve been there ever since for every midterm and presidential election as well as the primaries,” he said.
We caught up with Ansolabehere, mastermind of the long-running Cooperative Election Study, for a lesson on the evolving nature of real-time vote projections and a preview of election night 2024. The interview was edited for length and clarity.
How did TV journalists get it so wrong in 2000?
That election exposed a lot of administrative failures in the U.S. electoral system — from voting machines to registration to management of polling places. But the networks relied on the same old statistical models to ingest data — and then they just put that out. They stationed journalists in various areas to report on local results, but they weren’t necessarily placed where the problems were.
There was also a rush to report. The television networks were basically racing each other. Don’t get me wrong. There was certainly an ethos of getting it right because calling the election can have a big impact — it can shift how legal strategies are pursued by the campaigns afterwards. That was very much the case in 2000 and 2020. It was almost the case in 2004.
Journalists know it’s a big responsibility. But for me, it’s also this very cool problem.
Say more about that.
The very cool problem is, you’re shown in real time little portions of something that has occurred — the election. At 7 p.m., you get to see, say, 10 percent of what has happened. At what point can you make a decision? Do you need to see 50 percent of the data? Do you need 90 percent? It’s a missing data problem. It’s a forecasting problem. And it’s forecasting things that we political scientists care about, like turnout, vote shares, and how different groups voted.
How has the rise of absentee voting complicated this work?
In 2000, one in eight ballots nationwide was cast absentee or early. In 2016, 40 percent of ballets were cast absentee or early. During COVID, more than 60 percent were. That makes it really challenging to understand what’s going on during election night. In particular, there have been a bunch of studies that say making absentee voting easier doesn’t increase turnout. But since the states made absentee voting easier, turnout has gone up a bunch.
Many will recall from 2020 that there are idiosyncrasies with how absentee ballots are reported. How has that affected your work on election night?
Our old data models were based on [electoral] precincts. There are about 180,000 precincts in the U.S. — each a tiny place, with about 1,000 people — and we could see in each one how things had shifted from one election to the next.
But absentee ballots are not reported at the precinct level. They’re usually reported at the county level. There are 3,000 counties in the U.S., and they are very heterogeneous. That makes it very difficult to understand which little pieces of the missing or obscured puzzle have been revealed as the votes are reported.
Absentee voting was also politicized in 2020. How did that affect your team?
Up until 2020, we were lucky because absentee voting was pretty much like in-precinct voting. That is, it was unrelated to how people voted. But when we started getting the data streams in 2020, Biden would be up by something like 20 points in the absentee ballots, because that’s usually what gets dumped first on election night. You’ll see zero precincts reporting, but 20 percent of the votes are in — that’s the absentees from the county.
The problem was particularly vexing out west, because there you have these big urban counties that count for something like 75 percent of the state’s population. Think Maricopa County where Phoenix is in Arizona or Clark County with Las Vegas County in Nevada. We were, on the fly, trying to partition the data based not on the presidential vote. We could see that, say, the round of absentee votes that came in at 10:05 EST p.m. also had a reported vote from a certain state legislative district. That gave us some information about what part of Maricopa County the votes were from.
When did you know the results of the 2020 presidential election?
By about 1:30 a.m., I knew Biden had won.
But it took days for the media, including CBS, to declare a winner.
Everyone on the Decision Desk team was just racking their brains through midnight — can we figure out anything about where these absentee ballots are coming from? CBS staffer Kabir Khanna and I finally hit on a model where we could understand not so much what data we already had, but what data we didn’t yet have — how Democratic or Republican were the areas that hadn’t reported their absentee counts. And given how things were trending, what that must mean for the outstanding ballots.
At 1:30 it became obvious to me, at least, that Biden would win Arizona, Georgia, Pennsylvania, Wisconsin, Michigan, and Nevada.
What will you keep your eye on when you’re back at the Decision Desk?
One of the things we’re starting to look at right now is what’s the absentee ballot yield — that is, how many people have returned their absentee ballots — by party registration. A lot of states, not all, report party registration. But almost all of the states where the race will be close do.
And on Election Night itself, the first reporting we get is the 5 p.m. exit poll. If the Democrats aren’t up by five [points] in the raw exit-poll data, I’m going to guess it’ll be bad night for them. That’s what happened in 2016. The exit-poll data came back with Hillary Clinton up by five.
Why would the exit polls favor Democrats?
Raw exit-poll data always overstate the Democrats by five. We’ve studied it. We found things to explain little parts of it, but nobody really knows why. It’s been that way since the 1970s.
Nation & World
‘A sense of illumination, if not calm, about the fate of American democracy’
Lawrence Bobo (from left), Mina Cikara, Eric Matthew Nelson, Jill Lepore, and Theda Skocpol speaking during the event.Niles Singer/Harvard Staff Photographer
Christy DeSmith
Harvard Staff Writer
November 1, 2024
5 min read
Social Science faculty lend insight, analysis ahead of election
With a
‘A sense of illumination, if not calm, about the fate of American democracy’
Christy DeSmith
Harvard Staff Writer
5 min read
Social Science faculty lend insight, analysis ahead of election
With another presidential election at America’s doorstep, Lawrence D. Bobo, the dean of Social Science, last week gathered four of his division’s faculty members — Mina Cikara, Jill Lepore, Eric Nelson, and Theda Skocpol — to discuss the state of the U.S. political system.
“We don’t have enough occasions in the social sciences to share ideas across our disciplines, across our methods, and across our different perspectives to understand key issues,” offered Bobo, who is also the W. E. B. Du Bois Professor of the Social Sciences, at the top of the conversation. He hoped that the interdisciplinary panel’s expertise — in history, sociology, government, political theory, and psychology — would yield “a sense of illumination, if not calm, about the fate of American democracy.”
Drawing on field research with American voters and the history of U.S. political thought, the symposium quickly surfaced disagreement over the source of recent dysfunction.
Borrowing from a lecture she delivered last month upon winning the American Political Science Association’s James Madison Award, Skocpol, the Victor S. Thomas Professor of Government and Sociology, shared with the panel a timeline of recent actions by the Republican Party that in her view are aimed at undercutting U.S. elections and accountable governance.
“We’re in a period of radicalization to the point of authoritarian, anti-democratic commitment by one of the two major political parties,” she said. “Ironically, it’s the party that started out in the Civil War-era celebrating freedom and opposing slavery.”
Skocpol, co-author of “The Tea Party and the Remaking of Republican Conservatism” (2012) and “Rust Belt Union Blues” (2023), distributed a handout listing 18 examples since 2000 of what she termed “legal hardball,” a concept she credited to her Government Department colleagues Steven Levitsky and Daniel Ziblatt, whose book “Tyranny of the Minority” (2023) details how Southern Democrats used “constitutional hardball” during Reconstruction to disenfranchise Black voters and secure their own power.
Nelson, Robert M. Beren Professor of Government, offered “a modest dissent, or at least a friendly amendment” to Skocpol’s account. “There’s no question that the Republican Party has become deeply radicalized,” said Nelson, author “The Theology of Liberalism: Political Philosophy and the Justice of God.” (2019). “But I think the phenomenon that we’ve seen is a spiral, and in order to diagnose it correctly you have to realize that the dynamics require a kind of tit-for-tat on both sides.”
Democrats were the first to break with norms around judicial appointments, he argued, with Democratic senators lining up in 1987 against President Ronald Reagan’s Supreme Court nominee Robert Bork. “Republicans then responded and began abusing the confirmation process, particularly for lower court federal judges,” he said.
Democrats, he said, then eliminated the filibuster for lower court appointments in 2013. Republicans, in turn, refused to give President Barack Obama’s nominee Merrick Garland a SCOTUS hearing in 2016 and eliminated the filibuster for nominations the following year.
As a result, presidents no longer nominate justices who are “at least minimally acceptable to those in the minority,” Nelson said. Democrats have become increasingly outraged by the succession of Supreme Court decisions that followed. “And the Democrats now propose to violate the Constitution by having Congress pass a bill that pretends to have the authority to impose term limits on justices,” he concluded.
Also documented by Skocpol is an uptick in what she called “extralegal” threats and violence following false claims about the 2020 election results. Her examples included harassment of public officials as well as the Jan. 6 riot at the Capitol.
Republicans controlled the presidency and Congress for much of the period she analyzed, Skocpol said. “I think the timeline here raises the possibility that an outright offensive authoritarian movement has emerged that wants to take it all and to turn elections into, at most, decorations — and to deploy harassment and threats of violence regularly along with quasi-legal tactics,” she said.
Insights from the event’s other two speakers looked beyond partisan politics. Lepore, David Woods Kemper ’41 Professor of American History, drew from her 2020 book “If Then” to review six decades of technological change and what she sees as its corrosive effect on all levels of government. Cikara, a professor of psychology who specializes in intergroup conflict and polarization, spoke to a hopeful body of research on altering people’s “meta-perceptions,” or an individual’s ideas about how others regard them and their identity group.
With both Harvard students and faculty in attendance, the Oct. 21 symposium featured a lively Q&A section, dominated by fears of constitutional crises and democratic collapse.
Nelson shared his concerns that this year’s election results could set off “terrifying sorts of constitutional impasse” and “dangerous levels of instability and dysfunction.” Nevertheless, he lamented all the talk of existential danger this election season. “It reminds people of things that were said in 2016 and 2020,” he said.
It has become the “standard get-out-the-vote rhetoric” on left and the right alike, Lepore added. “I think there’s a lot of really important work about the stakes, and the stakes are extremely high, but I think that rhetoric is fundamentally incendiary.”
“But why would it be rhetoric to identify those threats and try to communicate them?” Skocpol wondered.
“The argument is that it has a perverse effect,” Nelson replied. “At this point, there’s been so much of it that people tune it out and don’t take the actual threat sufficiently seriously.”
In fall 2009, when Ethan Peterson ’13 arrived at MIT as an undergraduate, he already had some ideas about possible career options. He’d always liked building things, even as a child, so he imagined his future work would involve engineering of some sort. He also liked physics. And he’d recently become intent on reducing our dependence on fossil fuels and simultaneously curbing greenhouse gas emissions, which made him consider studying solar and wind energy, among other renewable sources.Things cr
In fall 2009, when Ethan Peterson ’13 arrived at MIT as an undergraduate, he already had some ideas about possible career options. He’d always liked building things, even as a child, so he imagined his future work would involve engineering of some sort. He also liked physics. And he’d recently become intent on reducing our dependence on fossil fuels and simultaneously curbing greenhouse gas emissions, which made him consider studying solar and wind energy, among other renewable sources.
Things crystallized for him in the spring semester of 2010, when he took an introductory course on nuclear fusion, taught by Anne White, during which he discovered that when a deuterium nucleus and a tritium nucleus combine to produce a helium nucleus, an energetic (14 mega electron volt) neutron — traveling at one-sixth the speed of light — is released. Moreover, 1020 (100 billion billion) of these neutrons would be produced every second that a 500-megawatt fusion power plant operates. “It was eye-opening for me to learn just how energy-dense the fusion process is,” says Peterson, who became the Class of 1956 Career Development Professor of nuclear science and engineering in July 2024. “I was struck by the richness and interdisciplinary nature of the fusion field. This was an engineering discipline where I could apply physics to solve a real-world problem in a way that was both interesting and beautiful.”
He soon became a physics and nuclear engineering double major, and by the time he graduated from MIT in 2013, the U.S. Department of Energy (DoE) had already decided to cut funding for MIT’s Alcator C-Mod fusion project. In view of that facility’s impending closure, Peterson opted to pursue graduate studies at the University of Wisconsin. There, he acquired a basic science background in plasma physics, which is central not only to nuclear fusion but also to astrophysical phenomena such as the solar wind.
When Peterson received his PhD from Wisconsin in 2019, nuclear fusion had rebounded at MIT with the launch, a year earlier, of the SPARC project — a collaborative effort being carried out with the newly founded MIT spinout Commonwealth Fusion Systems. He returned to his alma mater as a postdoc and then a research scientist in the Plasma Science and Fusion Center, taking his time, at first, to figure out how to best make his mark in the field.
Minding your neutrons
Around that time, Peterson was participating in a community planning process, sponsored by the DoE, that focused on critical gaps that needed to be closed for a successful fusion program. In the course of these discussions, he came to realize that inadequate attention had been paid to the handling of neutrons, which carry 80 percent of the energy coming out of a fusion reaction — energy that needs to be harnessed for electrical generation. However, these neutrons are so energetic that they can penetrate through many tens of centimeters of material, potentially undermining the structural integrity of components and damaging vital equipment such as superconducting magnets. Shielding is also essential for protecting humans from harmful radiation.
One goal, Peterson says, is to minimize the number of neutrons that escape and, in so doing, to reduce the amount of lost energy. A complementary objective, he adds, “is to get neutrons to deposit heat where you want them to and to stop them from depositing heat where you don’t want them to.” These considerations, in turn, can have a profound influence on fusion reactor design. This branch of nuclear engineering, called neutronics — which analyzes where neutrons are created and where they end up going — has become Peterson’s specialty.
It was never a high-profile area of research in the fusion community — as plasma physics, for example, has always garnered more of the spotlight and more of the funding. That’s exactly why Peterson has stepped up. “The impacts of neutrons on fusion reactor design haven’t been a high priority for a long time,” he says. “I felt that some initiative needed to be taken,” and that prompted him to make the switch from plasma physics to neutronics. It has been his principal focus ever since — as a postdoc, a research scientist, and now as a faculty member.
A code to design by
The best way to get a neutron to transfer its energy is to make it collide with a light atom. Lithium, with an atomic number of three, or lithium-containing materials are normally good choices — and necessary for producing tritium fuel. The placement of lithium “blankets,” which are intended to absorb energy from neutrons and produce tritium, “is a critical part of the design of fusion reactors,” Peterson says. High-density materials, such as lead and tungsten, can be used, conversely, to block the passage of neutrons and other types of radiation. “You might want to layer these high- and low-density materials in a complicated way that isn’t immediately intuitive” he adds. Determining which materials to put where — and of what thickness and mass — amounts to a tricky optimization problem, which will affect the size, cost, and efficiency of a fusion power plant.
To that end, Peterson has developed modelling tools that can make analyses of these sorts easier and faster, thereby facilitating the design process. “This has traditionally been the step that takes the longest time and causes the biggest holdups,” he says. The models and algorithms that he and his colleagues are devising are general enough, moreover, to be compatible with a diverse range of fusion power plant concepts, including those that use magnets or lasers to confine the plasma.
Now that he’s become a professor, Peterson is in a position to introduce more people to nuclear engineering, and to neutronics in particular. “I love teaching and mentoring students, sharing the things I’m excited about,” he says. “I was inspired by all the professors I had in physics and nuclear engineering at MIT, and I hope to give back to the community in the same way.”
He also believes that if you are going to work on fusion, there is no better place to be than MIT, “where the facilities are second-to-none. People here are extremely innovative and passionate. And the sheer number of people who excel in their fields is staggering.” Great ideas can sometimes be sparked by off-the-cuff conversations in the hallway — something that happens more frequently than you expect, Peterson remarks. “All of these things taken together makes MIT a very special place.”
Dr. Chani Traube, professor of pediatrics at Weill Cornell Medicine, has been awarded a $3.4 million grant from the National Institutes of Health for a clinical trial called Optimizing Pain Treatment in Children on Mechanical ventilation.
Dr. Chani Traube, professor of pediatrics at Weill Cornell Medicine, has been awarded a $3.4 million grant from the National Institutes of Health for a clinical trial called Optimizing Pain Treatment in Children on Mechanical ventilation.
As the world strives to cut back on carbon emissions, demand for minerals and metals needed for clean energy technologies is growing rapidly, sometimes straining existing supply chains and harming local environments. In a new study published today in Joule, Elsa Olivetti, a professor of materials science and engineering and director of the Decarbonizing Energy and Industry mission within MIT’s Climate Project, along with recent graduates Basuhi Ravi PhD ’23 and Karan Bhuwalka PhD ’24 and nine ot
As the world strives to cut back on carbon emissions, demand for minerals and metals needed for clean energy technologies is growing rapidly, sometimes straining existing supply chains and harming local environments. In a new study published today in Joule, Elsa Olivetti, a professor of materials science and engineering and director of the Decarbonizing Energy and Industry mission within MIT’s Climate Project, along with recent graduates Basuhi Ravi PhD ’23 and Karan Bhuwalka PhD ’24 and nine others, examine the case of nickel, which is an essential element for some electric vehicle batteries and parts of some solar panels and wind turbines.
How robust is the supply of this vital metal, and what are the implications of its extraction for the local environments, economies, and communities in the places where it is mined? MIT News asked Olivetti, Ravi, and Bhuwalka to explain their findings.
Q: Why is nickel becoming more important in the clean energy economy, and what are some of the potential issues in its supply chain?
Olivetti: Nickel is increasingly important for its role in EV batteries, as well as other technologies such as wind and solar. For batteries, high-purity nickel sulfate is a key input to the cathodes of EV batteries, which enables high energy density in batteries and increased driving range for EVs. As the world transitions away from fossil fuels, the demand for EVs, and consequently for nickel, has increased dramatically and is projected to continue to do so.
The nickel supply chain for battery-grade nickel sulfate includes mining nickel from ore deposits, processing it to a suitable nickel intermediary, and refining it to nickel sulfate. The potential issues in the supply chain can be broadly described as land use concerns in the mining stage, and emissions concerns in the processing stage. This is obviously oversimplified, but as a basic structure for our inquiry we thought about it this way. Nickel mining is land-intensive, leading to deforestation, displacement of communities, and potential contamination of soil and water resources from mining waste. In the processing step, the use of fossil fuels leads to direct emissions including particulate matter and sulfur oxides. In addition, some emerging processing pathways are particularly energy-intensive, which can double the carbon footprint of nickel-rich batteries compared to the current average.
Q: What is Indonesia’s role in the global nickel supply, and what are the consequences of nickel extraction there and in other major supply countries?
Ravi: Indonesia plays a critical role in nickel supply, holding the world's largest nickel reserves and supplying nearly half of the globally mined nickel in 2023. The country's nickel production has seen a remarkable tenfold increase since 2016. This production surge has fueled economic growth in some regions, but also brought notable environmental and social impacts to nickel mining and processing areas.
Nickel mining expansion in Indonesia has been linked to health impacts due to air pollution in the islands where nickel processing is prominent, as well as deforestation in some of the most biodiversity-rich locations on the planet. Reports of displacement of indigenous communities, land grabbing, water rights issues, and inadequate job quality in and around mines further highlight the social concerns and unequal distribution of burdens and benefits in Indonesia. Similar concerns exist in other major nickel-producing countries, where mining activities can negatively impact the environment, disrupt livelihoods, and exacerbate inequalities.
On a global scale, Indonesia’s reliance on coal-based energy for nickel processing, particularly in energy-intensive smelting and leaching of a clay-like material called laterite, results in a high carbon intensity for nickel produced in the region, compared to other major producing regions such as Australia.
Q: What role can industry and policymakers play in helping to meet growing demand while improving environmental safety?
Bhuwalka: In consuming countries, policies can foster “discerning demand,” which means creating incentives for companies to source nickel from producers that prioritize sustainability. This can be achieved through regulations that establish acceptable environmental footprints for imported materials, such as limits on carbon emissions from nickel production. For example, the EU’s Critical Raw Materials Act and the U.S. Inflation Reduction Act could be leveraged to promote responsible sourcing. Additionally, governments can use their purchasing power to favor sustainably produced nickel in public procurement, which could influence industry practices and encourage the adoption of sustainability standards.
On the supply side, nickel-producing countries like Indonesia can implement policies to mitigate the adverse environmental and social impacts of nickel extraction. This includes strengthening environmental regulations and enforcement to reduce the footprint of mining and processing, potentially through stricter pollution limits and responsible mine waste management. In addition, supporting community engagement, implementing benefit-sharing mechanisms, and investing in cleaner nickel processing technologies are also crucial.
Internationally, harmonizing sustainability standards and facilitating capacity building and technology transfer between developed and developing countries can create a level playing field and prevent unsustainable practices. Responsible investment practices by international financial institutions, favoring projects that meet high environmental and social standards, can also contribute to a stable and sustainable nickel supply chain.