Scientists create 'metal detector' to hunt down tumours

In a paper published today in Nature Genetics, scientists at the University of Cambridge and NIHR Cambridge Biomedical Research Centre analysed the full DNA sequence of 4,775 tumours from seven types of cancer. They used that data from Genomics England’s 100,000 Genomes Project to create an algorithm capable of identifying tumours with faults in their DNA that makes them easier to treat.
The algorithm, called PRRDetect, could one day help doctors work out which patients are more likely to have successful treatment. That could pave the way for more personalised treatment plans that increase people’s chances of survival.
The research was funded by Cancer Research UK and the National Institute for Health and Care Research (NIHR).
Professor Serena Nik-Zainal from the Early Cancer Institute at the University of Cambridge, lead author of the study, said: “Genomic sequencing is now far faster and cheaper than ever before. We are getting closer to the point where getting your tumour sequenced will be as routine as a scan or blood test.
“To use genomics most effectively in the clinic, we need tools which give us meaningful information about how a person’s tumour might respond to treatment. This is especially important in cancers where survival is poorer, like lung cancer and brain tumours.
“Cancers with faulty DNA repair are more likely to be treated successfully. PRRDetect helps us better identify those cancers and, as we sequence more and more cancers routinely in the clinic, it could ultimately help doctors better tailor treatments to individual patients.”
The research team looked for patterns in DNA created by so-called ‘indel’ mutations, in which letters are inserted or deleted from the normal DNA sequence.
They found unusual patterns of indel mutations in cancers that had faulty DNA repair mechanisms – known as ‘post-replicative repair dysfunction’ or PRRd. Using this information, the scientists developed PRRDetect to allow them to identify tumours with this fault from a full DNA sequence.
PRRd tumours are more sensitive to immunotherapy, a type of cancer treatment that uses the body’s own immune system to attack cancer cells. The scientists hope that the PRRd algorithm could act like a ‘metal detector’ to allow them to identify patients who are more likely to have successful treatment with immunotherapy.
The study follows from a previous ‘archaeological dig’ of cancer genomes carried out by Professor Nik-Zainal, which examined the genomes of tens of thousands of people and revealed previously unseen patterns of mutations which are linked to cancer.
This time, Professor Nik-Zainal and her team looked at cancers which have a higher proportion of tumours with PRRd. These include bowel, brain, endometrial, skin, lung, bladder and stomach cancers. Whole genome sequences of these cancers were provided by the 100,000 Genomes Project - a pioneering study led by Genomics England and NHS England which sequenced 100,000 genomes from around 85,000 NHS patients affected by rare diseases or cancer.
The study identified 37 different patterns of indel mutations across the seven cancer types included in this study. Ten of these patterns were already linked to known causes of cancer, such as smoking and exposure to UV light. Eight of these patterns were linked to PRRd. The remaining 19 patterns were new and could be linked to causes of cancer that are not fully understood yet or mechanisms within cells that can go wrong when a cell becomes cancerous.
Executive Director of Research and Innovation at Cancer Research UK, Dr Iain Foulkes, said: “Genomic medicine will revolutionise how we approach cancer treatment. We can now get full readouts of tumour DNA much more easily, and with that comes a wealth of information about how an individual’s cancer can start, grow and spread.
“Tools like PRRDetect are going to make personalised treatment for cancer a reality for many more patients in the future. Personalising treatment is much more likely to be successful, ensuring more people can live longer, better lives free from the fear of cancer.”
NIHR Scientific Director, Mike Lewis, said: “Cancer is a leading cause of death in the UK so it's impressive to see our research lead to the creation of a tool to determine which therapy will lead to a higher likelihood of successful cancer treatment.”
Chief Scientific Officer at Genomics England, Professor Matt Brown, said: “Genomics is playing an increasingly important role in healthcare and these findings show how genomic data can be used to drive more predictive, preventative care leading to better outcomes for patients with cancer.
“The creation of this algorithm showcases the immense value of whole genome sequencing not only in research but also in the clinic across multiple diverse cancer types in advancing cancer care.”
Reference
Koh, GCC et al. Redefined indel taxonomy reveals insights into mutational signatures. Nat Gen; 10 Apr 2025; DOI:
Adapted from a press release from Cancer Research UK
Cambridge researchers have created a ‘metal detector’ algorithm that can hunt down vulnerable tumours, in a development that could one day revolutionise the treatment of cancer.
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.